torch.zeros_like有什么作用

torch.zeros_like()是PyTorch中的函数,用于生成与输入张量形状、数据类型和设备相同的全零张量。通过提供输入张量,该函数简化了创建新零张量的过程,示例展示了如何在Python中使用它。
摘要由CSDN通过智能技术生成

本人github

torch.zeros_like() 是 PyTorch 中的一个函数,它返回一个与给定输入张量形状和数据类型相同,但所有元素都被设置为零的新张量。

这个函数的基本语法是:

torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False)

参数:

  • input (Tensor) - 输入张量,新张量的大小将与此张量相同。
  • dtype (torch.dtype, 可选) - 所需输出张量的所需数据类型。 默认值:如果为None,则将使用输入张量的数据类型。
  • layout (torch.layout, 可选) - 所需输出张量的所需布局。 默认值:如果为None,则将使用输入张量的布局。
  • device (torch.device, 可选) - 所需输出张量的所需设备。 默认值:如果为None,则将使用输入张量的设备。
  • requires_grad (bool, 可选) - 如果autograd应记录对返回张量的操作,则为True。 默认值:False。

例如,如果你有一个形状为 (3, 4) 的张量 x,并且你调用 torch.zeros_like(x),你将得到一个形状为 (3, 4)、所有元素都是零的新张量。

示例代码:

import torch

# 假设 x 是一个形状为 (3, 4) 的张量
x = torch.tensor([[1, 2, 3, 4],
                  [5, 6, 7, 8],
                  [9, 10, 11, 12]])

# 使用 torch.zeros_like 创建一个形状为 (3, 4) 的零张量
zero_tensor = torch.zeros_like(x)

# 输出 zero_tensor
print(zero_tensor)

这将输出:

tensor([[0, 0, 0, 0],
        [0, 0, 0, 0],
        [0, 0, 0, 0]])

这个函数在你想创建一个与现有张量具有相同属性(例如形状、数据类型和设备)但内容为零的新张量时非常有用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我想要身体健康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值