本人github
是的,有一些库和工具可以帮助自动选择和优化深度学习模型的结构和超参数。这个过程通常被称为自动机器学习(AutoML)。以下是一些常见的自动机器学习库和工具,以及它们在深度学习领域的应用:
- AutoKeras:
- AutoKeras 是一个开源的自动机器学习库,它可以自动地搜索深度学习模型的最佳结构和超参数。
- 官网链接:https://autokeras.com/
import autokeras as ak
# 为自动Keras提供输入和输出数据
input_node = ak.Input() # 输入节点
output_node = ak.DenseBlock()(input_node) # 使用密集块
output_node = ak.RegressionHead()(output_node) # 回归头节点
# 创建和训练自动Keras模型
auto_model = ak.AutoModel(inputs=input_node, outputs=output_node, max_trials=100)
auto_model.fit(train_features, train_targets, epochs=10)
- TPOT:
- TPOT 是一个使用遗传算法来自动化机器学习管道配置的工具。
- 官网链接:https://epistasislab.github.io/tpot/
from tpot import TPOTRegressor
tpot = TPOTRegressor(verbosity=2, generations=5, population_size=20)
tpot.fit(normalized_train_features, normalized_train_targets)
- H2O AutoML:
- H2O AutoML 提供了自动化机器学习的管道,包括自动特征工程、模型选择和超参数优化。
- 官网链接:http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
import h2o
from h2o.automl import H2OAutoML
h2o.init()
# 将数据加载到H2O帧中
train_frame = h2o.H2OFrame(train_data)
test_frame = h2o.H2OFrame(test_data)
# 定义目标变量和输入特征
x = train_frame.columns
y = 'target'
x.remove(y)
# 运行自动ML
aml = H2OAutoML(max_runtime_secs=3600)
aml.train(x=x, y=y, training_frame=train_frame)
# 显示最佳模型
aml.leaderboard
- Hyperopt:
- Hyperopt 是一个用于优化超参数的库,它使用贝叶斯优化方法。
- 官网链接:http://hyperopt.github.io/hyperopt/
from hyperopt import fmin, tpe, hp
from sklearn.metrics import mean_squared_error
space = {
'lr': hp.loguniform('lr', -5, 0),
'hidden_size': hp.quniform('hidden_size', 5, 100, 1),
...
}
def objective(params):
net = BPNetwork(input_size=10, hidden_size=int(params['hidden_size']), output_size=1)
optimizer = torch.optim.SGD(net.parameters(), lr=params['lr'])
...
return mean_squared_error(test_targets, predicted_targets)
best = fmin(fn=objective, space=space, algo=tpe.suggest, max_evals=100)
这些库和工具提供了不同程度的自动化和优化,可以帮助您更有效地构建和优化深度学习模型。