生成对抗网络 | 对抗生成网络(GAN)与深度卷积对抗生成网络(DCGAN)
生成对抗网络 (GAN) 是一种算法架构,它使用两个神经网络,其中一个对另一个(因此称为“对抗性”),以便生成新的合成数据实例,这些实例可以通过真实数据。它们广泛用于图像生成、视频生成和语音生成。
虽然大多数深度生成模型是通过最大化对数似然或对数似然的下限来训练的,但GANs采取了一种完全不同的方法,不需要推理或明确计算数据的似然。相反,两个模型被用来解决一个最小化任务:一个对数据进行采样的生成器,以及一个将数据分类为真实或生成的判别器。
本文以最直观的方式向初学者介绍生成对抗网络 (GAN) 的基本概念。目的是描述这种网络的工作,而无需深入研究相关的复杂数学,并以更实用的方式,以便读者可以开发自己的简单GAN。
首先构建一个简单的GAN,只有隐藏的密集层,并尝试输出有意义的图像。分析输出以发现在简单 GAN 中常见的一个特定问题。这个问题将在下一部分使用一种称为深度卷积生成对抗网络(DCGAN)的特定类型的GAN来解决。
GAN 由两个组件组成 -
生成器 - 生成新的数据实例
鉴别器 - 尝试将生成的或虚假的数据与真实数据集区分开来。
判别算法试图对输