生成对抗网络 | 对抗生成网络(GAN)与深度卷积对抗生成网络(DCGAN)

16 篇文章 35 订阅 ¥19.90 ¥99.00
本文深入浅出地介绍了生成对抗网络(GAN)的基本原理,特别是其两个核心组件——生成器和鉴别器。通过示例,解释了GAN如何训练以及其工作流程。文章还探讨了GAN在图像生成中的应用,并通过比较普通GAN和深度卷积对抗生成网络(DCGAN)的实验,展示了DCGAN能生成更清晰图像的优势。
摘要由CSDN通过智能技术生成

生成对抗网络 | 对抗生成网络(GAN)与深度卷积对抗生成网络(DCGAN)

生成对抗网络 (GAN) 是一种算法架构,它使用两个神经网络,其中一个对另一个(因此称为“对抗性”),以便生成新的合成数据实例,这些实例可以通过真实数据。它们广泛用于图像生成、视频生成和语音生成。

虽然大多数深度生成模型是通过最大化对数似然或对数似然的下限来训练的,但GANs采取了一种完全不同的方法,不需要推理或明确计算数据的似然。相反,两个模型被用来解决一个最小化任务:一个对数据进行采样的生成器,以及一个将数据分类为真实或生成的判别器。

本文以最直观的方式向初学者介绍生成对抗网络 (GAN) 的基本概念。目的是描述这种网络的工作,而无需深入研究相关的复杂数学,并以更实用的方式,以便读者可以开发自己的简单GAN。

首先构建一个简单的GAN,只有隐藏的密集层,并尝试输出有意义的图像。分析输出以发现在简单 GAN 中常见的一个特定问题。这个问题将在下一部分使用一种称为深度卷积生成对抗网络(DCGAN)的特定类型的GAN来解决。

GAN 由两个组件组成 -

生成器 - 生成新的数据实例

鉴别器 - 尝试将生成的或虚假的数据与真实数据集区分开来。

判别算法试图对输

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值