SABO-BiLSTM【23年新算法】减法平均优化器优化双向长短期记忆神经网络的多变量回归预测 可直接运行 Matlab

本文介绍了一种名为SABO-BiLSTM的新算法,该算法利用减法平均优化器优化了双向长短期记忆神经网络,应用于多变量回归预测。文章提供了代码示例,可在Matlab环境中直接运行,评估指标包括R2、MAE、RMSE和MAPE。代码注释详细,适合初学者。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

在这里插入图片描述

文章概述

SABO-BiLSTM【23年新算法】减法平均优化器优化双向长短期记忆神经网络的多变量回归预测 可直接运行 Matlab,评价指标包括: R2、MAE、RMSE和MAPE等。

直接替换Excel数据即可用!注释清晰,适合新手小白~
订阅专栏只能获取专栏内一份代码。

部分源码

%%  清空环境变量
warning off             % 关闭报警信息
close all               
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值