POA-BP多输入多输出,基于POA-BP鹈鹕算法优化BP神经网络多输入多输出预测

该博客介绍了原创的TTAO-CNN-GRU-Attention分类预测模型,利用三角拓扑聚合优化算法(TTAO)。模型适用于多特征输入的二分类和多分类问题,采用Matlab2023b及以上版本实现,包含详细注释,可生成分类效果和混淆矩阵图。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

在这里插入图片描述

文章概述

POA-BP多输入多输出,基于POA-BP鹈鹕算法优化BP神经网络多输入多输出预测
MATLAB完整源码和数据,
纯手工制作,代码质量极高,注释清晰,
excel数据,方便替换1.data为数据集,10个输入特征,3个输出变量。
2.main.m为主程序文件,运行即可,其余为函数文件,无需运行。
3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。
4.运行环境:MATLAB 2020及以上

订阅专栏只能获取专栏内一份代码。

部分源码

%
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值