前言
最近学习了一下克里金插值的原理并做了一点简单尝试,在此文记录!
本文详细介绍克里金(Kriging)插值的原理和python实现。首先介绍克里金插值的原理及理解,再详细介绍基于pykrige库实现的克里金插值Demo,并使用随机生成的数据进行了测试。
一、克里金插值原理
1.1 概述
克里金插值是根据空间相关关系通过一系列已知点的属性预测相近的未知点的属性的插值方法。有两点假设。
假设1:一点的属性值与其周围点的属性值有关,并且可以由其周围点的属性值推导出。
假设2:两点属性值差异性(不相关性)与二者间距离在一定距离范围内成正相关(核心思想)。
1.2 基本公式
已知条件:
- 已知点坐标及属性值
- 已知待求点坐标
- 已知点-待求点距离矩阵
- 已知点间距离矩阵
根据假设1,空间内某未知值点估计值 z 0 ′ z_0^{\prime} z0′是部分已知点值的加权和
z 0 ′ = ∑ i = 1 n z i w i z_0^{\prime}=\sum_{i=1}^n z_i w_i z0′=∑i=1nziwi
其中n是可以决定该点属性值的点数量(一般取该点周边一定数量的已知点),
z i z_i zi代表第i个已知点的属性值, w i w_i wi代表第i个已知点的权重。
1.2 权重 w i w_i wi的确定
次级假设1:
为得到尽可能准确的结果, w i w_i wi应使得点处估计值 z 0 ′ z_0^{\prime} z0′与真实值 z 0 z_0 z0之差最小。
E ( z 0 ′ − z 0 ) = 0 E\left(z_0^{\prime}-z_0\right)=0 E(z0′−