机器学习----聚类算法

目录

一、聚类分析

1、什么是聚类分析?

2、K-means算法

(1)基本思想

(2)K-means算法的步骤      

(3)K-means算法包含的函数公式

3、DBSCAN

(1)基本思想

(2)DBSCAN 算法的主要参数

(3)注意事项

(4)需要满足条件

4、代码部分

使用 Python 和 scikit-learn 进行聚类分析

安装依赖库

示例代码


      机器学习中的无监督学习包括:聚类分析、关联规则、序列模式。

一、聚类分析

1、什么是聚类分析?

       聚类分析是一种无监督学习技术,它旨在将数据点划分成一组具有相似特征的簇。换句话说,聚类分析可以帮助我们识别数据中的潜在群组,而不需要预先知道这些群组的标签或类别。聚类的目标是最大化同一簇内的相似性,并最小化不同簇之间的相似性。

      聚类模型的核心是选择合适的距离度量和聚类算法。

模型及算法

作用

基本思想

优点

缺点

聚类算法用于无监督学习通过将数据集分成多个组别,使得组内的数据点相似度最高,组间的数据点相似度最低能够发现数据集中的隐藏结构和模式,适用于大多数数据集对初始聚类中心的选择和聚类算法的选择较为敏感,对异常值和噪声敏感

2、K-means算法

(1)基本思想

      将数据集中的点分为 k 个簇(cluster),使得每个簇内的点尽可能相似,而不同簇之间的点尽可能不同。

(2)K-means算法的步骤      

      为了实现这个目标,k-MEANS 算法会反复执行以下步骤:

       1、随机选择k个中心点

       2、计算每个数据点与每个中心点的距离,并将数据归类到距离它最近的中心点所属的簇。 

       3、更新每个簇的中心点,即将该簇内所有数据点的坐标取平均值

       4、重复步骤2和3,直到收敛(即中心点不在发生变化)。

(3)K-means算法包含的函数公式

          计算两个数据点之间的距离

                   d = sqrt(sum((x1 - x2)^2)),其中x1x2分别是两个数据点的坐标。

          计算一个数据点与簇中心之间的距离

       d = sqrt(sum((x - c)^2)),其中x是数据点,c是簇中心。

          计算簇中心

       c = mean(cp),其中cp就是cluster_points是簇内所有数据点的坐标列表。

        该方法的优点是计算速度快,可用于样本量较大的数据,缺点是需要人为设定聚类的数量 K,且对极值敏感。另外,K-Means 不是一个最佳化的方法,因为起始的中心点是随机选择的,而起始中心点的选择不同,导致的结果也会不同。

3、DBSCAN

(1)基本思想

        在空间中寻找密度较高且互相连通的区域,将这些区域划分为簇,并将其他密度较低的区域划分为噪声,DBSCAN 算法的主要特点是能够识别噪声并自动调整簇的大小。

(2)DBSCAN 算法的主要参数

        eps: 指定邻域搜索的半径,即以该半径为半径的球形邻域内的点被认为是相邻点。

              较小的 eps 值会使得算法更关注局部密度,可能导致更多的噪声被划分为簇;

              较大的 eps 值会使得算法关注全局密度,可能导致较小的簇被忽略。

        min_samples指定一个簇至少需要包含的点数

             较小的 min_samples 值会使得算法更倾向于识别较小的簇,但可能导致噪声被误判为簇;               较大的 min_samples 值会使得算法更倾向于识别较大的簇,但可能导致较小的簇被忽略。

(3)注意事项

       1、选择合适的 eps 和 min_samples 参数;可以使用交叉验证等方法来选择最佳参数组合。

       2、数据集中的点分布应尽量均匀,避免密集和稀疏区域的相邻

       3、对于高维数据,可以考虑使用多维数据降维方法(如主成分分析(PCA))来减少计算复杂度。

(4)需要满足条件

        DBSCAN 算法生成的簇满足以下两个条件:

           密度条件:一个点是否属于某个簇,取决于该点邻域内点的密度。如果邻域内点的密度大于或等于某个阈值(即 min_samples/eps),则该点属于一个簇;否则,该点被视为噪声。

           连通性条件:一个簇内的所有点都相互连通,即它们之间的距离小于等于 eps

4、代码部分

使用 Python 和 scikit-learn 进行聚类分析

现在让我们来看一个聚类分析的示例,使用 Python 和 scikit-learn 库来实施。我们将使用 K-Means 聚类算法来对示例数据进行聚类。

安装依赖库

首先,确保你已经安装了必要的库。你可以使用以下命令来安装 scikit-learn:

pip install scikit-learn
示例代码
# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans

# 创建模拟数据
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=1.0, random_state=42)

# 使用 K-Means 聚类算法
kmeans = KMeans(n_clusters=4, random_state=42)
kmeans.fit(X)

# 获取簇中心点和簇标签
cluster_centers = kmeans.cluster_centers_
cluster_labels = kmeans.labels_

# 绘制数据点和簇中心点
plt.scatter(X[:, 0], X[:, 1], c=cluster_labels, cmap='viridis')
plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1], c='red', marker='x', s=300)
plt.title("K-Means Clustering")
plt.show()

这段代码的关键步骤包括:

  1. 导入必要的库,包括 NumPy、Matplotlib、scikit-learn 的数据生成函数和 K-Means 聚类算法。

  2. 使用 make_blobs 函数创建一个模拟数据集,其中包含 300 个数据点,分为 4 个簇。

  3. 创建 K-Means 聚类模型,指定要分成 4 个簇,并使用 fit 方法将模型拟合到数据上。

  4. 获取簇中心点和簇标签。

  5. 绘制数据点以及簇中心点,以可视化聚类结果。

        代码演示了如何使用 K-Means 聚类算法对数据进行聚类,并将聚类结果可视化出来。聚类分析是一个有用的工具,可以帮助我们理解和探索未标记数据中的潜在结构。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值