机器学习之关联规则

目录

导言

1、什么是关联规则挖掘?

2、Apriori算法:关联规则挖掘的工具

        Apriori 算法思想

  3、置信度和支持度      

      (1)支持度 (Support)

      (2)置信度 (Confidence)

4、提升度

提升度的计算公式如下:

提升度的解释如下:

5、关联规则挖掘的实际应用

结论


导言

        在当今数据驱动的世界中,数据不仅是一种宝贵的资源,还是一种潜在的信息金矿。关联规则挖掘是机器学习中的一个重要分支,它可以帮助我们从大规模数据集中发现隐藏在数据背后的有趣模式和关联关系。在本博客中,我们将深入探讨关联规则挖掘的概念、原理和实际应用,同时提供一些Python代码来解析和应用这一强大的工具

1、什么是关联规则挖掘?

        关联规则挖掘是一种数据挖掘技术,旨在发现数据集中不同元素之间的频繁关联关系。这些关联规则通常表示为“如果A发生,那么B也会发生”的形式,其中A和B是数据集中的项集。最常见的应用之一是购物篮分析,以确定哪些商品通常一起购买,从而帮助商家改进促销策略或商品摆放布局。

2、Apriori算法:关联规则挖掘的工具

        Apriori算法是关联规则挖掘中最经典的算法之一,它通过迭代扫描数据集来发现频繁项集,然后生成关联规则。下面是一个简单的Apriori算法示例,我们将使用Python来实现。

# 导入必要的库
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

# 创建示例数据集
data = {'Milk': [1, 0, 1, 1, 1],
        'Bread': [1, 0, 0, 1, 1],
        'Butter': [0, 0, 1, 1, 0],
        'Eggs': [1, 1, 1, 0, 0]}

# 转换数据集为布尔值
df = pd.DataFrame(data)
df = df.astype(bool)

# 使用Apriori算法挖掘频繁项集
frequent_itemsets = apriori(df, min_support=0.5, use_colnames=True)

# 生成关联规则
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.0)

# 打印关联规则
print(rules)

      在上面的示例中,我们首先创建了一个简单的示例数据集,然后使用Apriori算法挖掘频繁项集,并生成关联规则。你可以根据实际情况调整`min_support``min_threshold`参数来过滤结果。

        Apriori 算法思想

       Apriori 算法是关联规则挖掘中最常用的算法之一,其核心思想基于先验知识(a priori knowledge)来减少搜索空间。算法通过迭代的方式,从候选项集中生成频繁项集,并且利用 Apriori 原理,即如果一个项集是频繁的,那么它的所有子集也必须是频繁的,从而减少了不必要的计算。Apriori 算法包括以下步骤

            --扫描数据集,生成候选项集(单个项组合)的计数。

            --基于支持度阈值筛选掉不频繁的项集。

            --迭代生成更大的候选项集,直到无法生成更多频繁项集为止。

       Apriori 算法的优点是它能够高效地处理大规模数据集,但缺点是可能会生成大量的候选项集,导致计算开销增加。

  3、置信度和支持度      

      关联规则挖掘是一种用于发现数据集中项之间关联关系的技术。在这个过程中,我们通常使用以下几个重要的概念和函数来衡量和分析关联规则:

      (1)支持度 (Support)

       支持度是衡量一个项集在数据集中出现的频率的度量。具体来说,支持度表示包含某个项集的事务数量与总事务数量之间的比例。支持度的公式如下:

 Support(A) = 包含项集 A 的事务数 / 总事务数

   高支持度表示项集在数据集中出现的频率较高,这通常用于过滤掉不够频繁的项集。

      (2)置信度 (Confidence)

       置信度是衡量关联规则的强度的度量。对于规则 "A => B",它表示项集 A 出现时项集 B 也出现的条件概率。具体来说,置信度表示在包含 A 的事务中同时包含 B 的事务的比例。置信度的公式如下:

   Confidence(A => B) = Support(A ∪ B)/Support(A)

   高置信度表示规则 "A => B" 非常强,即在满足条件 A 的情况下,出现 B 的概率较高。

4、提升度

      关联规则中的提升度(Lift)是一项用于衡量两个项集之间关联关系强度的指标。提升度告诉我们,两个项集之间的关联是否超过了随机发生的期望。具体来说,提升度用于判断一个规则 "A => B" 中项集 A 和项集 B 之间的关系。

提升度的计算公式如下:

         Lift(A => B) = Support(A ∪ B)/Support(A) * Support(B)

其中:

       - $Support(A ∪ B)$ 是项集 A 和项集 B 的并集的支持度。
       - $Support(A)$ 是项集 A 的支持度。
      - $Support(B)$ 是项集 B 的支持度。

提升度的解释如下:

      - 如果提升度等于 1,说明规则 "A => B" 中的项集 A 和项集 B 是独立的,即 A 的出现与 B 的出现无关。
      - 如果提升度大于 1,说明规则 "A => B" 中的项集 A 和项集 B 之间是正相关的。这表示 A 的出现会增加 B 的出现的概率,从而表示了一个有意义的关联。
      - 如果提升度小于 1,说明规则 "A => B" 中的项集 A 和项集 B 之间是负相关的。这表示 A 的出现会减少 B 的出现的概率,可能不太有意义。

      通常情况下,提升度大于 1 的规则更有趣,因为它们表示了正相关关系,而提升度等于 1 或小于 1 的规则可能不太有意义,因

5、关联规则挖掘的实际应用

      关联规则挖掘在许多领域都有广泛的应用,以下是一些实际场景的示例:

      1. 市场篮分析:零售商可以利用关联规则挖掘来了解哪些商品通常一起购买,从而制定精确的促销策略。

      2. 健康保险:健康保险公司可以使用关联规则挖掘来确定不同病症之间的关联关系,从而更好地管理风险和提供个性化的保险计划。

      3. 社交网络:社交媒体平台可以利用关联规则挖掘来发现用户之间的社交模式,以改进推荐系统和广告定位。

      4. 电信:电信公司可以分析通话记录,找出通话模式和不同业务之间的关联,以改进网络规划和客户服务。

结论

       关联规则挖掘是机器学习中一个有趣且实用的领域,它可以帮助我们从大规模数据集中提取有价值的信息和见解。本博客提供了一个简单的Apriori算法示例,但实际应用中可能需要更复杂的技术和工具。希望这篇博客能够为你提供关于关联规则挖掘的基础知识,并启发你在实际项目中应用这一强大工具的想法。

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值