✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

随着全球对可再生能源的需求不断增长,风能作为一种清洁、可再生的能源形式,逐渐受到了广泛关注。然而,由于风能的不稳定性和不可控性,风电功率的预测成为了风电行业中一个重要的研究领域。准确地预测风电功率可以帮助电网管理者更好地调度电力资源,提高电力系统的可靠性和稳定性。

在过去的几十年中,人工智能技术在风电功率预测中得到了广泛应用。其中,BP神经网络是一种常用的预测模型,具有较强的非线性建模能力。然而,BP神经网络在训练过程中容易陷入局部最优解,导致预测精度不高。为了解决这个问题,研究人员提出了许多优化算法来改进BP神经网络的性能。

黏菌算法(SMA)是一种新兴的优化算法,受到了生物界的启发。它模拟了黏菌在自然界中的生长和繁殖过程,通过黏菌之间的信息交流来寻找最优解。SMA算法具有全局搜索能力和较强的鲁棒性,能够有效地避免BP神经网络陷入局部最优解的问题。

在基于黏菌算法优化的BP神经网络中,首先需要确定神经网络的结构和参数。通常情况下,神经网络的结构包括输入层、隐藏层和输出层。输入层接收风速、风向等气象数据,隐藏层通过激活函数将输入信号转化为非线性输出,输出层则输出风电功率的预测结果。在确定了神经网络的结构后,需要使用SMA算法来优化神经网络的权重和阈值。

SMA算法的优化过程包括初始化、黏菌迁移、黏菌繁殖和黏菌更新等步骤。在初始化阶段,黏菌的位置和黏度等参数被随机生成。然后,根据黏菌之间的相互作用,进行黏菌迁移和繁殖操作,以寻找更优的解。最后,在黏菌更新阶段,根据黏菌的适应度值更新黏菌的位置和黏度。通过多次迭代,SMA算法能够逐步优化BP神经网络的权重和阈值,提高风电功率预测的准确性。

实验结果表明,基于黏菌算法优化的BP神经网络在风电功率预测中具有较高的准确性和稳定性。与传统的BP神经网络相比,优化后的神经网络能够更好地捕捉风能的特征和变化趋势,提高预测精度。此外,SMA算法还具有较快的收敛速度和较强的鲁棒性,能够适应不同的风电功率预测问题。

综上所述,基于黏菌算法SMA优化BP神经网络是一种有效的风电功率预测方法。它能够克服BP神经网络的局部最优解问题,提高预测精度和稳定性。未来,我们可以进一步探索黏菌算法在其他领域的应用,并结合其他优化算法进一步提高风电功率预测的性能。

📣 部分代码

%___________________________________________________________________%
%  Grey Wolf Optimizer (GWO) source codes version 1.0               %
%                                                                   %
%  Developed in MATLAB R2011b(7.13)                                 %
%                                                                   %
%  Author and programmer: Seyedali Mirjalili                        %
%                                                                   %
%         e-Mail: ali.mirjalili@gmail.com                           %
%                 seyedali.mirjalili@griffithuni.edu.au             %
%                                                                   %
%       Homepage: http://www.alimirjalili.com                       %
%                                                                   %
%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %
%               Grey Wolf Optimizer, Advances in Engineering        %
%               Software , in press,                                %
%               DOI: 10.1016/j.advengsoft.2013.12.007               %
%                                                                   %
%___________________________________________________________________%

% This function initialize the first population of search agents
function Positions=initialization(SearchAgents_no,dim,ub,lb)

Boundary_no= size(ub,2); % numnber of boundaries

% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end

% If each variable has a different lb and ub
if Boundary_no>1
    for i=1:dim
        ub_i=ub(i);
        lb_i=lb(i);
        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
    end
end

⛳️ 运行结果

SMA-BP回归预测 | Matlab 黏菌优化算法优化BP神经网络回归预测_路径规划

SMA-BP回归预测 | Matlab 黏菌优化算法优化BP神经网络回归预测_神经网络_02编辑

SMA-BP回归预测 | Matlab 黏菌优化算法优化BP神经网络回归预测_路径规划_03

SMA-BP回归预测 | Matlab 黏菌优化算法优化BP神经网络回归预测_神经网络_04编辑

SMA-BP回归预测 | Matlab 黏菌优化算法优化BP神经网络回归预测_路径规划_05

SMA-BP回归预测 | Matlab 黏菌优化算法优化BP神经网络回归预测_无人机_06
编辑

🔗 参考文献

[1]范媛媛,孟迪飞,桑英军,等.基于改进的黏菌算法优化Elman神经网络的电梯故障预测方法.CN202211341256.X[2023-09-22].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合