✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
图像去雾是计算机视觉领域的一个重要问题,它涉及到从雾霾天气中获取清晰的图像。在过去的几十年里,研究人员提出了许多图像去雾的方法,其中基于多尺度Retinex的图像去雾方法是一种非常有效的方法。
多尺度Retinex是一种用于图像增强的经典算法,它基于对数域进行图像分解,并利用多尺度的Retinex理论来恢复图像的真实色彩和细节。在图像去雾中,多尺度Retinex算法可以帮助我们去除雾霾对图像的影响,使得图像更加清晰和真实。
多尺度Retinex图像去雾方法的关键在于如何有效地利用多尺度Retinex理论来去除雾霾。一种常见的做法是将图像分解成多个尺度的分量,然后对每个尺度的分量进行Retinex增强,最后将增强后的分量合成为最终的去雾图像。这种方法能够有效地去除不同尺度下的雾霾,并保持图像的细节和色彩。
除了基本的多尺度Retinex图像去雾方法,研究人员还提出了许多改进的算法来进一步提高去雾效果。例如,一些研究人员提出了结合深度学习的多尺度Retinex图像去雾方法,利用深度神经网络来学习图像中的雾霾分布,并根据学习到的信息来去除雾霾。这种方法能够更加精准地去除雾霾,并且适用于不同类型的图像和不同程度的雾霾。
另外,一些研究人员还提出了基于物理模型的多尺度Retinex图像去雾方法,他们利用大气光传输模型和雾霾散射模型来对图像进行建模,并根据建模结果来去除雾霾。这种方法能够更好地理解雾霾的成因,并且可以在复杂的环境中取得更好的效果。
总的来说,基于多尺度Retinex的图像去雾方法是一种非常有效的去雾技术,它能够帮助我们从雾霾天气中获取清晰的图像。随着深度学习和物理模型的发展,我们相信多尺度Retinex图像去雾方法将会在未来得到进一步的提升和应用。希望未来能够有更多的研究人员投入到这个领域,为图像去雾技术的发展做出更大的贡献。
📣 部分代码
I = imread('test4.jpg'); %读取图像
R = I(:, :, 1); %R通道的二维图像
G = I(:, :, 2); %G通道的二维图像
B = I(:, :, 3); %B通道的二维图像
R0 = im2double(R); %将图像的数据类型转换为double类型
G0 = im2double(G);
B0 = im2double(B);
[N1, M1] = size(R);
a = 50; %MSRCR算法中的调整参数
II = imadd(R0, G0);
II = imadd(II, B0); %将R、G、B三个通道的图叠加在一起
Ir = immultiply(R0, a); %R通道的图像乘以调整参数
Ig = immultiply(G0, a); %G通道的图像乘以调整参数
Ib = immultiply(B0, a); %B通道的图像乘以调整参数
Rlog = log(R0+1);
Rfft2 = fft2(R0);
sigma1 = 128; %尺度参数之一
⛳️ 运行结果
🔗 参考文献
[1] 胡兴,郭亮,杨雪飞,等.一种基于MATLAB的多尺度Retinex图像去雾法:CN201910332614.2[P].CN110189261A[2023-12-13].
[2] 刘翠响,张莎,王宝珠,等.航拍图像去雾优化算法研究[J].深圳大学学报:理工版, 2018, 35(5):7.DOI:CNKI:SUN:SZDL.0.2018-05-008.
[3] 罗会兰,林家彪.一种基于多尺度Retinex算法的图像去雾方法[J].计算机应用与软件, 2013, 30(4):4.DOI:10.3969/j.issn.1000-386x.2013.04.017.