【图像去雾】基于多尺度Retinex图像去雾附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

图像去雾是计算机视觉领域的一个重要问题,它涉及到从雾霾天气中获取清晰的图像。在过去的几十年里,研究人员提出了许多图像去雾的方法,其中基于多尺度Retinex的图像去雾方法是一种非常有效的方法。

多尺度Retinex是一种用于图像增强的经典算法,它基于对数域进行图像分解,并利用多尺度的Retinex理论来恢复图像的真实色彩和细节。在图像去雾中,多尺度Retinex算法可以帮助我们去除雾霾对图像的影响,使得图像更加清晰和真实。

多尺度Retinex图像去雾方法的关键在于如何有效地利用多尺度Retinex理论来去除雾霾。一种常见的做法是将图像分解成多个尺度的分量,然后对每个尺度的分量进行Retinex增强,最后将增强后的分量合成为最终的去雾图像。这种方法能够有效地去除不同尺度下的雾霾,并保持图像的细节和色彩。

除了基本的多尺度Retinex图像去雾方法,研究人员还提出了许多改进的算法来进一步提高去雾效果。例如,一些研究人员提出了结合深度学习的多尺度Retinex图像去雾方法,利用深度神经网络来学习图像中的雾霾分布,并根据学习到的信息来去除雾霾。这种方法能够更加精准地去除雾霾,并且适用于不同类型的图像和不同程度的雾霾。

另外,一些研究人员还提出了基于物理模型的多尺度Retinex图像去雾方法,他们利用大气光传输模型和雾霾散射模型来对图像进行建模,并根据建模结果来去除雾霾。这种方法能够更好地理解雾霾的成因,并且可以在复杂的环境中取得更好的效果。

总的来说,基于多尺度Retinex的图像去雾方法是一种非常有效的去雾技术,它能够帮助我们从雾霾天气中获取清晰的图像。随着深度学习和物理模型的发展,我们相信多尺度Retinex图像去雾方法将会在未来得到进一步的提升和应用。希望未来能够有更多的研究人员投入到这个领域,为图像去雾技术的发展做出更大的贡献。

📣 部分代码

I = imread('test4.jpg');         %读取图像R = I(:, :, 1);              %R通道的二维图像G = I(:, :, 2);              %G通道的二维图像B = I(:, :, 3);              %B通道的二维图像R0 = im2double(R);        %将图像的数据类型转换为double类型G0 = im2double(G);B0 = im2double(B);[N1, M1] = size(R);a = 50;                %MSRCR算法中的调整参数II = imadd(R0, G0);             II = imadd(II, B0);       %将R、G、B三个通道的图叠加在一起Ir = immultiply(R0, a);    %R通道的图像乘以调整参数Ig = immultiply(G0, a);    %G通道的图像乘以调整参数Ib = immultiply(B0, a);    %B通道的图像乘以调整参数Rlog = log(R0+1);Rfft2 = fft2(R0);sigma1 = 128;          %尺度参数之一

⛳️ 运行结果

🔗 参考文献

[1] 胡兴,郭亮,杨雪飞,等.一种基于MATLAB的多尺度Retinex图像去雾法:CN201910332614.2[P].CN110189261A[2023-12-13].

[2] 刘翠响,张莎,王宝珠,等.航拍图像去雾优化算法研究[J].深圳大学学报:理工版, 2018, 35(5):7.DOI:CNKI:SUN:SZDL.0.2018-05-008.

[3] 罗会兰,林家彪.一种基于多尺度Retinex算法的图像去雾方法[J].计算机应用与软件, 2013, 30(4):4.DOI:10.3969/j.issn.1000-386x.2013.04.017.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值