✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
LightGBM(Light Gradient Boosting Machine)是一种高效的梯度增强决策树算法,因其速度快、精度高而被广泛应用于机器学习领域。LightGBM不仅支持单输入单输出回归任务,还支持多输入多输出(Multi-Input Multi-Output,简称MIMO)回归任务。
在MIMO回归任务中,模型需要同时预测多个输出变量。例如,在房价预测任务中,模型需要同时预测房屋的售价和租金。LightGBM通过使用多个决策树来分别预测每个输出变量,从而实现MIMO回归任务。
LightGBM多输入多输出回归预测步骤
-
数据预处理
在开始训练LightGBM模型之前,需要对数据进行预处理。数据预处理包括缺失值处理、异常值处理和特征工程。缺失值处理可以采用均值填充、中位数填充或删除缺失值等方法。异常值处理可以采用截断法、Winsorize法或删除异常值等方法。特征工程可以采用特征选择、特征转换和特征降维等方法。
-
模型训练
数据预处理完成后,就可以开始训练LightGBM模型了。LightGBM模型的训练过程如下:
-
初始化一棵决策树,并使用训练数据对决策树进行训练。
-
计算每个训练样本的梯度和Hessian矩阵。
-
根据梯度和Hessian矩阵更新决策树的权重。
-
重复步骤1-3,直到达到最大迭代次数或满足其他停止条件。
-
-
模型预测
模型训练完成后,就可以使用模型对新的数据进行预测了。LightGBM模型的预测过程如下:
-
将新的数据输入到模型中。
-
模型根据决策树的权重计算每个输出变量的预测值。
-
将预测值输出。
-
总结
LightGBM是一种高效的梯度增强决策树算法,支持单输入单输出回归任务和多输入多输出回归任务。LightGBM通过使用多个决策树来分别预测每个输出变量,从而实现MIMO回归任务。LightGBM模型的训练过程和预测过程都非常简单,并且模型的预测精度较高。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 闫鹏,张云鹏,田婕,等.基于CEEMDAN-K-means算法的爆破振动信号去噪研究[J].爆破, 2023, 40(3):184-190.
[2] 董亚丽,杨迎娟,范姣姣.基于输入输出线性化方法的一类多输入多输出非线性系统的观测器设计[J].自动化学报, 2008, 34(8):6.DOI:10.3724/SP.J.1004.2008.00880.
[3] 刘朝阳,沈保锁,付晓梅.基于空时分组码的多输入多输出系统仿真实现[J].电子测量技术, 2006, 29(5):3.DOI:10.3969/j.issn.1002-7300.2006.05.048.
[4] 李王辉,白刚华.多输入多输出信道估计算法的仿真研究[J].计算机仿真, 2011, 28(4):4.DOI:10.3969/j.issn.1006-9348.2011.04.034.
[5] 刘良玉.多输入多输出频域模型参数识别[D].西安电子科技大学,2013.DOI:10.7666/d.D363885.