多输入多输出 |基于LightGBM多输入多输出预测Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

LightGBM(Light Gradient Boosting Machine)是一种高效的梯度增强决策树算法,因其速度快、精度高而被广泛应用于机器学习领域。LightGBM不仅支持单输入单输出回归任务,还支持多输入多输出(Multi-Input Multi-Output,简称MIMO)回归任务。

在MIMO回归任务中,模型需要同时预测多个输出变量。例如,在房价预测任务中,模型需要同时预测房屋的售价和租金。LightGBM通过使用多个决策树来分别预测每个输出变量,从而实现MIMO回归任务。

LightGBM多输入多输出回归预测步骤

  1. 数据预处理

    在开始训练LightGBM模型之前,需要对数据进行预处理。数据预处理包括缺失值处理、异常值处理和特征工程。缺失值处理可以采用均值填充、中位数填充或删除缺失值等方法。异常值处理可以采用截断法、Winsorize法或删除异常值等方法。特征工程可以采用特征选择、特征转换和特征降维等方法。

  2. 模型训练

    数据预处理完成后,就可以开始训练LightGBM模型了。LightGBM模型的训练过程如下:

    1. 初始化一棵决策树,并使用训练数据对决策树进行训练。

    2. 计算每个训练样本的梯度和Hessian矩阵。

    3. 根据梯度和Hessian矩阵更新决策树的权重。

    4. 重复步骤1-3,直到达到最大迭代次数或满足其他停止条件。

  3. 模型预测

    模型训练完成后,就可以使用模型对新的数据进行预测了。LightGBM模型的预测过程如下:

    1. 将新的数据输入到模型中。

    2. 模型根据决策树的权重计算每个输出变量的预测值。

    3. 将预测值输出。​

总结

LightGBM是一种高效的梯度增强决策树算法,支持单输入单输出回归任务和多输入多输出回归任务。LightGBM通过使用多个决策树来分别预测每个输出变量,从而实现MIMO回归任务。LightGBM模型的训练过程和预测过程都非常简单,并且模型的预测精度较高。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 闫鹏,张云鹏,田婕,等.基于CEEMDAN-K-means算法的爆破振动信号去噪研究[J].爆破, 2023, 40(3):184-190.

[2] 董亚丽,杨迎娟,范姣姣.基于输入输出线性化方法的一类多输入多输出非线性系统的观测器设计[J].自动化学报, 2008, 34(8):6.DOI:10.3724/SP.J.1004.2008.00880.

[3] 刘朝阳,沈保锁,付晓梅.基于空时分组码的多输入多输出系统仿真实现[J].电子测量技术, 2006, 29(5):3.DOI:10.3969/j.issn.1002-7300.2006.05.048.

[4] 李王辉,白刚华.多输入多输出信道估计算法的仿真研究[J].计算机仿真, 2011, 28(4):4.DOI:10.3969/j.issn.1006-9348.2011.04.034.

[5] 刘良玉.多输入多输出频域模型参数识别[D].西安电子科技大学,2013.DOI:10.7666/d.D363885.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值