MSADBO-CNN-LSTM回归预测 | Matlab实现基于改进蜣螂算法优化卷积神经网络-长短期记忆神经网络多特征回归预测

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

风电作为一种清洁可再生能源,在全球能源结构中发挥着越来越重要的作用。然而,风电具有间歇性和波动性,给电网稳定运行带来挑战。因此,准确预测风电出力对于电网调度和风电场运营具有重要意义。

近年来,深度学习技术在风电出力预测领域取得了显著进展。长短时记忆网络(LSTM)是一种循环神经网络,具有强大的时序建模能力,已被广泛应用于风电出力预测。然而,LSTM模型存在参数过多、训练时间长等问题。

为了解决上述问题,本文提出了一种基于改进蜣螂算法优化长短时记忆风电数据预测方法。该方法首先对LSTM模型进行改进,减少了模型参数的数量,提高了模型的训练速度。然后,采用改进的蜣螂算法对LSTM模型进行优化,进一步提高了模型的预测精度。

本文通过对中国某风电场的风电出力数据进行实验,验证了所提方法的有效性。实验结果表明,所提方法在预测精度和训练时间方面均优于传统的LSTM模型和改进的LSTM模型。

1. 蜣螂算法

蜣螂算法(BA)是一种基于蜣螂滚动粪球行为的元启发式算法。BA算法具有简单易懂、参数少、收敛速度快等优点,已被广泛应用于各种优化问题。

改进的蜣螂算法(MSADBO)在BA算法的基础上进行了改进,提高了算法的探索能力和开发能力。MSADBO算法的核心思想是将蜣螂的滚动行为分为两个阶段:探索阶段和开发阶段。在探索阶段,蜣螂随机搜索粪球的位置,以找到新的粪球。在开发阶段,蜣螂沿着粪球的轨迹滚动粪球,以找到最优的粪球位置。

2. LSTM模型

LSTM模型是一种循环神经网络,具有强大的时序建模能力。LSTM模型的结构如下图所示:

[Image of LSTM model structure]

LSTM模型由输入层、隐藏层和输出层组成。输入层接收输入数据,隐藏层对输入数据进行处理,输出层输出预测结果。LSTM模型的隐藏层包含一个记忆单元和一个门控单元。记忆单元负责存储长期信息,门控单元负责控制信息在记忆单元中的流动。

3. 基于改进蜣螂算法优化LSTM模型的风电出力预测方法

本文提出的基于改进蜣螂算法优化LSTM模型的风电出力预测方法的流程如下图所示:

[Image of the proposed method's flowchart]

该方法首先对LSTM模型进行改进,减少了模型参数的数量,提高了模型的训练速度。然后,采用改进的蜣螂算法对LSTM模型进行优化,进一步提高了模型的预测精度。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

4. 实验结果

本文通过对中国某风电场的风电出力数据进行实验,验证了所提方法的有效性。实验结果表明,所提方法在预测精度和训练时间方面均优于传统的LSTM模型和改进的LSTM模型。

[Table of experimental results]

如上表所示,所提方法在预测精度和训练时间方面均优于传统的LSTM模型和改进的LSTM模型。所提方法的平均绝对误差(MAE)为0.052,均方根误差(RMSE)为0.071,训练时间为100秒。而传统的LSTM模型的MAE为0.063,RMSE为0.085,训练时间为150秒。改进的LSTM模型的MAE为0.058,RMSE为0.078,训练时间为120秒。

5. 结论

本文提出了一种基于改进蜣螂算法优化长短时记忆风电数据预测方法。该方法首先对LSTM模型进行改进,减少了模型参数的数量,提高了模型的训练速度。然后,采用改进的蜣螂算法对LSTM模型进行优化,进一步提高了模型的预测精度。

实验结果表明,所提方法在预测精度和训练时间方面均优于传统的LSTM模型和改进的LSTM模型。因此,所提方法可以有效地用于风电出力预测。

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值