✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 旅行商问题概述
旅行商问题(TSP)是一个经典的组合优化问题,它要求在一个给定的城市集合中找到一条最短的路径,使每个城市都被访问一次且仅访问一次。TSP在现实生活中有很多应用,如物流配送、车辆调度、旅游规划等。
2. 蜣螂优化算法
蜣螂优化算法(BOA)是一种受蜣螂滚动粪球行为启发的元启发式算法。蜣螂在滚动粪球时,会根据粪球的气味和周围环境来调整自己的滚动方向。BOA算法模拟了蜣螂的这一行为,通过不断地更新种群中个体的解并评估其适应度,来寻找TSP问题的最优解。
3. 基于BOA算法求解TSP问题
基于BOA算法求解TSP问题的步骤如下:
-
初始化种群:随机生成一定数量的解,作为初始种群。
-
评估种群:计算每个解的适应度,适应度越高,解越好。
-
选择种群:根据适应度值,选择一部分解作为下一代的父代。
-
交叉变异:对父代进行交叉变异,生成新的解。
-
更新种群:将新的解加入种群,并淘汰适应度较低的解。
-
重复步骤2-5,直到达到终止条件。
📣 部分代码
clearvars
close all
clc
x(1)=rand;
P=0.5;
for i=1:4999
if 0<=x(i)<P
x(i+1)=x(i)/P;
end
if P<=x(i)<0.5
x(i+1)=(x(i)-P)/(0.5-P);
end
if 0.5<=x(i)<1-P
x(i+1)=(1-P-x(i))/(0.5-P);
end
if 1-P<=x(i)<1
x(i+1)=(1-x(i))/P;
end
end
figure
plot(x,'.')
xlabel('维度')
ylabel('混沌值')
figure
hist(x)
xlabel('混沌值')
ylabel('频数')
⛳️ 运行结果
4. 实验结果
为了验证BOA算法的性能,我们将其应用于TSPLIB中的几个经典TSP实例。实验结果表明,BOA算法能够在合理的时间内找到TSP问题的最优解或接近最优解。
5. 结论
BOA算法是一种简单高效的元启发式算法,它能够有效地求解TSP问题。BOA算法具有鲁棒性强、收敛速度快等优点,可以应用于各种TSP问题。
🔗 参考文献
[1] 马晗,常安定,陈童,et al.基于文化混合优化算法的旅行商问题求解[J].计算机工程与科学, 2019, 41(7):6.DOI:10.3969/j.issn.1007-130X.2019.07.018.
[2] MA Han,CHANG An-ding,CHEN Tong,等.基于文化混合优化算法的旅行商问题求解[J].计算机工程与科学, 2019, 041(007):1273-1278.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类