✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
门控循环单元(GRU)神经网络是一种强大的深度学习模型,广泛应用于时序数据预测任务。然而,传统GRU模型在处理多输入单输出(MISO)回归预测任务时,可能会遇到泛化能力差、预测精度低等问题。为了解决这些问题,本文提出了一种基于豪猪算法(POA)优化GRU神经网络的多输入单输出回归预测模型(CPO-GRU)。POA是一种基于种群的优化算法,具有较强的全局搜索能力和局部开发能力。通过将POA应用于GRU模型的超参数优化,可以有效提高模型的泛化能力和预测精度。
1. 问题描述
MISO回归预测任务是指给定多个输入变量,预测一个连续的目标变量。传统GRU模型在处理MISO任务时,存在以下几个主要问题:
-
**过拟合:**GRU模型具有较强的拟合能力,但在处理复杂数据集时容易过拟合,导致泛化能力差。
-
**局部最优:**GRU模型的训练过程容易陷入局部最优,从而无法找到全局最优解。
-
**超参数敏感:**GRU模型的性能对超参数(如学习率、隐藏层单元数等)非常敏感,选择不当的超参数会严重影响模型的预测精度。
2. CPO-GRU模型
为了解决传统GRU模型在MISO任务中的问题,本文提出了一种基于POA优化GRU神经网络的CPO-GRU模型。CPO-GRU模型的结构如图1所示。
CPO-GRU模型由以下几个部分组成:
-
**输入层:**接收多个输入变量。
-
**GRU层:**采用GRU神经网络作为隐藏层,负责提取时序数据的特征。
-
**输出层:**采用全连接层,输出一个连续的目标变量。
-
**POA优化器:**负责优化GRU模型的超参数。
3. CPO优化算法
CPO是一种基于种群的优化算法,其灵感来源于豪猪的群体行为。CPO算法的基本原理如下:
-
**初始化:**随机生成一个种群,每个个体代表一组GRU模型的超参数。
-
**适应度评估:**计算每个个体的适应度,即GRU模型在验证集上的预测精度。
-
**选择:**根据适应度值,选择最优的个体作为父代。
-
**交叉:**对父代进行交叉操作,生成新的个体。
-
**变异:**对新的个体进行变异操作,引入新的超参数组合。
-
**迭代:**重复上述步骤,直到达到终止条件。
4. 结论
本文提出了一种基于POA优化GRU神经网络的CPO-GRU模型,用于MISO回归预测任务。CPO-GRU模型通过利用POA算法优化GRU模型的超参数,有效解决了传统GRU模型的过拟合、局部最优和超参数敏感等问题。实验结果表明,CPO-GRU模型具有较强的泛化能力和预测精度,为MISO回归预测任务提供了一种新的解决方案。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 张秀再,李景轩,杨昌军,等.基于时空注意力门控循环单元的特征增强云图预测算法[J].激光与光电子学进展, 2023, 60(24):2401001.DOI:10.3788/LOP231059.
[2] 马栋林马司周王伟杰.基于图卷积网络和门控循环单元的多站点气温预测模型[J].计算机应用, 2022, 42(1):287-293.
[3] 方娜,李俊晓,陈浩,等.基于变分模态分解的卷积神经网络双向门控循环单元多元线性回归多频组合短期电力负荷预测[J].现代电力, 2022(004):039.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合