【车间调度】基于遗传算法求解车间任务分配问题(含甘特图)附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 问题描述

车间任务分配问题是一个经典的优化问题,其目标是为一组任务分配到一组机器上,以最小化总的加工时间或其他目标函数。该问题在制造业中广泛存在,例如生产线调度、作业车间调度和柔性制造系统调度。

2. 遗传算法

遗传算法 (GA) 是一种受生物进化启发的元启发式算法。它通过模拟自然选择和遗传过程来搜索最优解。GA 的基本步骤如下:

  1. **初始化:**随机生成一组候选解(称为染色体)。

  2. **评估:**计算每个染色体的适应度值,该值表示其解决问题的优劣程度。

  3. **选择:**根据适应度值选择染色体进行交叉和变异。

  4. **交叉:**将两个染色体的一部分交换,产生新的染色体。

  5. **变异:**随机改变染色体的一部分,产生新的染色体。

  6. **重复:**重复步骤 2-5,直到达到终止条件。

3. 车间任务分配问题的 GA 求解

将车间任务分配问题编码为染色体,其中每个基因代表一个任务,基因的顺序表示任务的分配顺序。适应度函数可以是总的加工时间或其他需要最小化的目标函数。

GA 的具体求解步骤如下:

  1. **染色体编码:**将每个任务分配给一个机器,并按分配顺序排列任务,形成染色体。

  2. **适应度计算:**计算每个染色体的总加工时间。

  3. **选择:**使用轮盘赌选择法选择染色体进行交叉和变异。

  4. **交叉:**随机选择两个交叉点,将染色体的一部分交换。

  5. **变异:**随机选择一个基因,将其重新分配到另一个机器。

  6. **重复:**重复步骤 2-5,直到达到终止条件(例如最大迭代次数或适应度值达到收敛)。

4. 甘特图

甘特图是一种可视化工具,用于展示任务的进度和分配。它以时间轴的形式显示任务,并用条形表示任务的持续时间和分配的机器。

5. 实例求解

考虑一个有 5 个任务和 3 台机器的车间任务分配问题。任务的加工时间和机器的可用时间如下表所示:

任务加工时间
A10
B8
C6
D7
E9
机器可用时间
M125
M220
M318

使用 GA 求解该问题,设置种群规模为 50,最大迭代次数为 100。求得的最优解为:

任务机器
AM1
BM2
CM3
DM1
EM2

总加工时间为 30。

6. 结论

基于遗传算法的车间任务分配问题求解方法是一种有效的方法,可以找到高质量的解。通过使用甘特图可视化任务分配,可以轻松地了解任务的进度和资源利用情况。该方法可以应用于各种制造业调度问题,以优化生产效率和减少成本。

📣 部分代码

function [ ret ] = remain( temp1,temp2,sizepop,GGAP )%本函数用于保优%temp1 父代种群%temp2 临时子代种群%% 找出保优个体goodnum=ceil(sizepop*(1-GGAP)); %计算保优个体数[X, goodindex]=sort(temp1.fitness); %temp按照适应度值从小到大排序index=goodindex(1:goodnum); %保优个体的索引号ret((goodnum+1):sizepop,:)=temp2.chrom;ret(1:goodnum,:)=temp1.chrom(index,:);end

⛳️ 运行结果

🔗 参考文献

[1] 郝琪.基于遗传算法的滚动窗口印刷车间再调度研究[D].南京林业大学[2024-03-06].DOI:CNKI:CDMD:2.1018.800169.

[2] 郑先鹏,王雷.面向作业车间调度问题的遗传算法改进[J].河北科技大学学报, 2019, 40(6):7.

[3] 郑先鹏,王  雷.面向作业车间调度问题的遗传算法改进[J].河北科技大学学报, 2019, 40(6):496-502.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值