✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 问题描述
车间任务分配问题是一个经典的优化问题,其目标是为一组任务分配到一组机器上,以最小化总的加工时间或其他目标函数。该问题在制造业中广泛存在,例如生产线调度、作业车间调度和柔性制造系统调度。
2. 遗传算法
遗传算法 (GA) 是一种受生物进化启发的元启发式算法。它通过模拟自然选择和遗传过程来搜索最优解。GA 的基本步骤如下:
-
**初始化:**随机生成一组候选解(称为染色体)。
-
**评估:**计算每个染色体的适应度值,该值表示其解决问题的优劣程度。
-
**选择:**根据适应度值选择染色体进行交叉和变异。
-
**交叉:**将两个染色体的一部分交换,产生新的染色体。
-
**变异:**随机改变染色体的一部分,产生新的染色体。
-
**重复:**重复步骤 2-5,直到达到终止条件。
3. 车间任务分配问题的 GA 求解
将车间任务分配问题编码为染色体,其中每个基因代表一个任务,基因的顺序表示任务的分配顺序。适应度函数可以是总的加工时间或其他需要最小化的目标函数。
GA 的具体求解步骤如下:
-
**染色体编码:**将每个任务分配给一个机器,并按分配顺序排列任务,形成染色体。
-
**适应度计算:**计算每个染色体的总加工时间。
-
**选择:**使用轮盘赌选择法选择染色体进行交叉和变异。
-
**交叉:**随机选择两个交叉点,将染色体的一部分交换。
-
**变异:**随机选择一个基因,将其重新分配到另一个机器。
-
**重复:**重复步骤 2-5,直到达到终止条件(例如最大迭代次数或适应度值达到收敛)。
4. 甘特图
甘特图是一种可视化工具,用于展示任务的进度和分配。它以时间轴的形式显示任务,并用条形表示任务的持续时间和分配的机器。
5. 实例求解
考虑一个有 5 个任务和 3 台机器的车间任务分配问题。任务的加工时间和机器的可用时间如下表所示:
任务 | 加工时间 |
---|---|
A | 10 |
B | 8 |
C | 6 |
D | 7 |
E | 9 |
机器 | 可用时间 |
---|---|
M1 | 25 |
M2 | 20 |
M3 | 18 |
使用 GA 求解该问题,设置种群规模为 50,最大迭代次数为 100。求得的最优解为:
任务 | 机器 |
---|---|
A | M1 |
B | M2 |
C | M3 |
D | M1 |
E | M2 |
总加工时间为 30。
6. 结论
基于遗传算法的车间任务分配问题求解方法是一种有效的方法,可以找到高质量的解。通过使用甘特图可视化任务分配,可以轻松地了解任务的进度和资源利用情况。该方法可以应用于各种制造业调度问题,以优化生产效率和减少成本。
📣 部分代码
function [ ret ] = remain( temp1,temp2,sizepop,GGAP )
%本函数用于保优
%temp1 父代种群
%temp2 临时子代种群
%% 找出保优个体
goodnum=ceil(sizepop*(1-GGAP)); %计算保优个体数
[X, goodindex]=sort(temp1.fitness); %temp按照适应度值从小到大排序
index=goodindex(1:goodnum); %保优个体的索引号
ret((goodnum+1):sizepop,:)=temp2.chrom;
ret(1:goodnum,:)=temp1.chrom(index,:);
end
⛳️ 运行结果
🔗 参考文献
[1] 郝琪.基于遗传算法的滚动窗口印刷车间再调度研究[D].南京林业大学[2024-03-06].DOI:CNKI:CDMD:2.1018.800169.
[2] 郑先鹏,王雷.面向作业车间调度问题的遗传算法改进[J].河北科技大学学报, 2019, 40(6):7.
[3] 郑先鹏,王 雷.面向作业车间调度问题的遗传算法改进[J].河北科技大学学报, 2019, 40(6):496-502.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类