故障识别 时空特征-多头自注意力机制CNN-BiLSTM-Attention的故障识别matlab程序,直接运行

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文提出了一种基于注意力机制的卷积神经网络结合双向长短记忆神经网络(CNN-BiLSTM-Attention)模型,用于数据分类任务。该模型充分利用了卷积神经网络在提取空间特征方面的优势,以及双向长短记忆神经网络在处理序列数据方面的能力,并通过注意力机制增强了模型对重要特征的关注。实验结果表明,该模型在多个数据集上的分类性能优于传统方法,具有较好的泛化能力和鲁棒性。

引言

数据分类是机器学习和人工智能领域中的一个基本任务,广泛应用于自然语言处理、计算机视觉和医疗诊断等领域。近年来,深度学习技术在数据分类任务中取得了显著的进展,其中卷积神经网络(CNN)和双向长短记忆神经网络(BiLSTM)是两个重要的模型。

CNN是一种擅长提取图像或序列数据中空间特征的神经网络模型。它通过卷积和池化操作逐步提取数据中的局部特征,并最终形成全局特征表示。BiLSTM是一种擅长处理序列数据的递归神经网络模型。它通过正向和反向两个方向处理序列,可以捕获序列中前后文的依赖关系。

注意力机制是一种神经网络技术,可以增强模型对重要特征的关注。它通过一个注意力模块计算特征的重要性权重,并根据权重对特征进行加权求和,从而突出重要特征的影响。

模型结构

提出的 CNN-BiLSTM-Attention 模型由以下几个部分组成:

  • **卷积层:**提取输入数据中的空间特征。

  • **池化层:**对卷积特征进行降维和抽象。

  • **BiLSTM 层:**处理卷积特征序列,捕获序列中的前后文依赖关系。

  • **注意力层:**计算特征的重要性权重。

  • **加权求和层:**根据权重对特征进行加权求和,形成最终的特征表示。

  • **分类层:**对最终特征表示进行分类。

训练过程

模型的训练过程如下:

  1. 将输入数据输入卷积层,提取空间特征。

  2. 对卷积特征进行池化,降维和抽象。

  3. 将池化特征输入 BiLSTM 层,处理序列数据。

  4. 计算特征的重要性权重。

  5. 根据权重对特征进行加权求和,形成最终的特征表示。

  6. 将最终特征表示输入分类层,进行分类。

  7. 计算损失函数,更新模型参数。

实验结果

为了评估模型的性能,我们在多个数据集上进行了实验,包括 MNIST 手写数字数据集、CIFAR-10 图像数据集和 IMDB 电影评论数据集。实验结果表明,CNN-BiLSTM-Attention 模型在所有数据集上都取得了优于传统方法的分类性能。

结论

本文提出的 CNN-BiLSTM-Attention 模型将卷积神经网络、双向长短记忆神经网络和注意力机制相结合,实现了数据分类任务的高精度和鲁棒性。该模型充分利用了不同模型的优势,在多个数据集上取得了优异的性能。未来,我们将继续探索注意力机制在数据分类任务中的应用,并进一步提高模型的泛化能力和鲁棒性。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

[1]阴旭强.基于深度学习的奶牛基本运动行为识别方法研究[J].[2024-03-08].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 11
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个基于TensorFlow实现的1维CNN-LSTM多头注意力机制的示例代码: ```python import tensorflow as tf from tensorflow.keras import layers class MultiHeadSelfAttention(layers.Layer): def __init__(self, embed_dim, num_heads): super(MultiHeadSelfAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == embed_dim, "Embedding dimension must be divisible by number of heads." self.query_dense = layers.Dense(embed_dim) self.key_dense = layers.Dense(embed_dim) self.value_dense = layers.Dense(embed_dim) self.combine_heads = layers.Dense(embed_dim) def attention(self, query, key, value): score = tf.matmul(query, key, transpose_b=True) dim_scaled_score = score / tf.math.sqrt(tf.cast(self.head_dim, dtype=tf.float32)) attention_weights = tf.nn.softmax(dim_scaled_score, axis=-1) attention_output = tf.matmul(attention_weights, value) return attention_output, attention_weights def split_heads(self, x, batch_size): x = tf.reshape(x, [batch_size, -1, self.num_heads, self.head_dim]) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, inputs): batch_size = tf.shape(inputs)[0] query = self.query_dense(inputs) key = self.key_dense(inputs) value = self.value_dense(inputs) query = self.split_heads(query, batch_size) key = self.split_heads(key, batch_size) value = self.split_heads(value, batch_size) attention_output, _ = self.attention(query, key, value) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) concat_attention = tf.reshape(attention_output, [batch_size, -1, self.embed_dim]) output = self.combine_heads(concat_attention) return output class CNN_LSTM_MultiHeadAttention(tf.keras.Model): def __init__(self, num_classes, num_heads, dropout_rate): super(CNN_LSTM_MultiHeadAttention, self).__init__() self.conv1d = layers.Conv1D(filters=128, kernel_size=3, padding='same', activation='relu') self.pooling = layers.MaxPooling1D(pool_size=2, strides=2) self.lstm = layers.LSTM(units=64, return_sequences=True) self.dropout = layers.Dropout(dropout_rate) self.attention = MultiHeadSelfAttention(embed_dim=64, num_heads=num_heads) self.flatten = layers.Flatten() self.dense = layers.Dense(num_classes, activation='softmax') def call(self, inputs): x = self.conv1d(inputs) x = self.pooling(x) x = self.lstm(x) x = self.dropout(x) x = self.attention(x) x = self.flatten(x) output = self.dense(x) return output ``` 上面的代码中,`MultiHeadSelfAttention`类实现了多头注意力机制,`CNN_LSTM_MultiHeadAttention`类则使用了1维CNN、LSTM和多头注意力机制来构建模型。其中,`num_classes`指定了分类的类别数,`num_heads`指定了注意力机制中注意头的数量,`dropout_rate`指定了dropout的比例。在`call`方法中,输入数据首先经过1维卷积层和池化层,然后经过LSTM层和dropout层,接着经过多头注意力机制,最后通过全连接层输出分类结果。 该模型可以通过如下代码进行编译和训练: ```python model = CNN_LSTM_MultiHeadAttention(num_classes=10, num_heads=8, dropout_rate=0.2) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_val, y_val)) ``` 其中,`x_train`和`y_train`是训练数据,`x_val`和`y_val`是验证数据。在训练过程中,采用了Adam优化器和交叉熵损失函数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值