✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
姿态解算是惯性导航系统(INS)中一项关键技术,它能够根据惯性传感器(如陀螺仪和加速度计)的测量值,估计载体的姿态信息。姿态解算算法有很多种,其中扩展卡尔曼滤波(EKF)是一种广泛使用的算法,因为它能够同时处理非线性系统和高斯噪声。
EKF算法原理
EKF算法是一种非线性滤波算法,它将卡尔曼滤波算法扩展到非线性系统。EKF算法的基本原理如下:
-
**状态预测:**根据上一时刻的状态估计和系统模型,预测当前时刻的状态。
-
**协方差预测:**根据上一时刻的协方差估计和系统模型,预测当前时刻的协方差。
-
**测量更新:**根据当前时刻的测量值和测量模型,更新状态估计和协方差估计。
姿态解算中的EKF算法
在姿态解算中,EKF算法的状态变量通常包括四元数或欧拉角,它们可以表示载体的姿态。系统模型通常是非线性的,因为它描述了载体的角速度和加速度对姿态的影响。测量模型通常是线性的,因为它描述了陀螺仪和加速度计的测量值与载体姿态之间的关系。
EKF算法在姿态解算中的应用
EKF算法在姿态解算中有着广泛的应用,包括:
-
**惯性导航系统(INS):**EKF算法是INS中姿态解算的主要算法,它能够根据陀螺仪和加速度计的测量值,估计载体的姿态信息。
-
**视觉惯性里程计(VIO):**EKF算法可以将视觉传感器(如相机)和惯性传感器(如陀螺仪和加速度计)的信息融合起来,实现姿态解算。
-
**运动捕捉系统:**EKF算法可以用于运动捕捉系统中,根据惯性传感器和标记点的测量值,估计人体或物体的姿态信息。
EKF算法的优点和缺点
EKF算法是一种鲁棒且高效的姿态解算算法,它具有以下优点:
-
**非线性处理:**EKF算法能够处理非线性系统,这使其非常适合姿态解算。
-
**高斯噪声处理:**EKF算法能够处理高斯噪声,这使其非常适合处理惯性传感器和视觉传感器的测量值。
-
**实时性:**EKF算法是一种递归算法,它可以实时处理数据,这使其非常适合在线姿态解算。
然而,EKF算法也存在一些缺点:
-
**线性化误差:**EKF算法通过线性化非线性系统来工作,这可能会引入线性化误差。
-
**初始化敏感性:**EKF算法对初始状态估计和协方差估计非常敏感,这可能会影响算法的性能。
-
**计算复杂度:**EKF算法的计算复杂度较高,这可能会限制其在资源受限的系统中的应用。
总结
扩展卡尔曼滤波(EKF)算法是一种广泛用于姿态解算的非线性滤波算法。它能够处理非线性系统和高斯噪声,并具有实时性。EKF算法在惯性导航系统、视觉惯性里程计和运动捕捉系统中都有着广泛的应用。然而,EKF算法也存在线性化误差、初始化敏感性和计算复杂度高等缺点。
📣 部分代码
clear ;
close all
clc;
load('data.mat');
% ox,oy,oz是手机自带方向传感器测量的姿态角,可以与解算的姿态角作对比
% dt采样间隔
% updateVect用来判断加速度计、陀螺仪、磁力计是否全部完成了一次测量,这里假设它们测量频率相同
NLength = min(length(mx),length(ox));
NLength = min(length(gx),NLength);
NLength = min(length(ax),NLength);
dt = 0.02;
q=[0.0001,0.08,0.009,0.005];
r=[0.0008,1000,100];
updateVect=[1,1,1];
% 初始化
x_aposteriori=[gx(1),gy(1),gz(1),0,0,0,ax(1),ay(1),az(1),mx(1),my(1),mz(1)]';
P_aposteriori=zeros(12,12);
yaw=zeros(1,NLength); pitch=zeros(1,NLength); roll=zeros(1,NLength);
for i = 2:NLength
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类