【姿态解算】基于扩展卡尔曼滤波EKF实现姿态解算附Matlab代码

本文介绍了扩展卡尔曼滤波(EKF)在惯性导航系统中的关键作用,详细阐述了EKF的工作原理、在姿态解算中的应用以及其优点(处理非线性系统、高斯噪声和实时性)和缺点(线性化误差、初始化敏感性、计算复杂度)。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

姿态解算是惯性导航系统(INS)中一项关键技术,它能够根据惯性传感器(如陀螺仪和加速度计)的测量值,估计载体的姿态信息。姿态解算算法有很多种,其中扩展卡尔曼滤波(EKF)是一种广泛使用的算法,因为它能够同时处理非线性系统和高斯噪声。

EKF算法原理

EKF算法是一种非线性滤波算法,它将卡尔曼滤波算法扩展到非线性系统。EKF算法的基本原理如下:

  1. **状态预测:**根据上一时刻的状态估计和系统模型,预测当前时刻的状态。

  2. **协方差预测:**根据上一时刻的协方差估计和系统模型,预测当前时刻的协方差。

  3. **测量更新:**根据当前时刻的测量值和测量模型,更新状态估计和协方差估计。

姿态解算中的EKF算法

在姿态解算中,EKF算法的状态变量通常包括四元数或欧拉角,它们可以表示载体的姿态。系统模型通常是非线性的,因为它描述了载体的角速度和加速度对姿态的影响。测量模型通常是线性的,因为它描述了陀螺仪和加速度计的测量值与载体姿态之间的关系。

EKF算法在姿态解算中的应用

EKF算法在姿态解算中有着广泛的应用,包括:

  • **惯性导航系统(INS):**EKF算法是INS中姿态解算的主要算法,它能够根据陀螺仪和加速度计的测量值,估计载体的姿态信息。

  • **视觉惯性里程计(VIO):**EKF算法可以将视觉传感器(如相机)和惯性传感器(如陀螺仪和加速度计)的信息融合起来,实现姿态解算。

  • **运动捕捉系统:**EKF算法可以用于运动捕捉系统中,根据惯性传感器和标记点的测量值,估计人体或物体的姿态信息。

EKF算法的优点和缺点

EKF算法是一种鲁棒且高效的姿态解算算法,它具有以下优点:

  • **非线性处理:**EKF算法能够处理非线性系统,这使其非常适合姿态解算。

  • **高斯噪声处理:**EKF算法能够处理高斯噪声,这使其非常适合处理惯性传感器和视觉传感器的测量值。

  • **实时性:**EKF算法是一种递归算法,它可以实时处理数据,这使其非常适合在线姿态解算。

然而,EKF算法也存在一些缺点:

  • **线性化误差:**EKF算法通过线性化非线性系统来工作,这可能会引入线性化误差。

  • **初始化敏感性:**EKF算法对初始状态估计和协方差估计非常敏感,这可能会影响算法的性能。

  • **计算复杂度:**EKF算法的计算复杂度较高,这可能会限制其在资源受限的系统中的应用。

总结

扩展卡尔曼滤波(EKF)算法是一种广泛用于姿态解算的非线性滤波算法。它能够处理非线性系统和高斯噪声,并具有实时性。EKF算法在惯性导航系统、视觉惯性里程计和运动捕捉系统中都有着广泛的应用。然而,EKF算法也存在线性化误差、初始化敏感性和计算复杂度高等缺点。

📣 部分代码

clear ;close allclc;load('data.mat');% ox,oy,oz是手机自带方向传感器测量的姿态角,可以与解算的姿态角作对比% dt采样间隔% updateVect用来判断加速度计、陀螺仪、磁力计是否全部完成了一次测量,这里假设它们测量频率相同NLength = min(length(mx),length(ox));NLength = min(length(gx),NLength);NLength = min(length(ax),NLength);dt = 0.02;q=[0.0001,0.08,0.009,0.005];r=[0.0008,1000,100];updateVect=[1,1,1];% 初始化x_aposteriori=[gx(1),gy(1),gz(1),0,0,0,ax(1),ay(1),az(1),mx(1),my(1),mz(1)]';P_aposteriori=zeros(12,12);yaw=zeros(1,NLength);   pitch=zeros(1,NLength);    roll=zeros(1,NLength);for i = 2:NLength

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值