✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
数字水印是一种将信息嵌入到数字图像中的技术,用于版权保护、内容认证和图像取证等应用。本文介绍了一种基于最小有效位(LSB)算法的数字水印嵌入攻击提取方法,并提出了一个基于直方图的特征提取方法来提高提取的鲁棒性。
引言
数字水印嵌入攻击提取技术旨在从嵌入水印的图像中提取隐藏的信息。LSB算法是一种广泛使用的数字水印嵌入技术,它通过修改图像中像素的LSB来嵌入信息。然而,LSB算法容易受到攻击,攻击者可以通过修改LSB来破坏嵌入的水印。
LSB算法数字水印嵌入
LSB算法通过修改图像中像素的LSB来嵌入信息。对于每个像素,其LSB被替换为要嵌入的信息比特。例如,如果要嵌入比特“1”,则将像素的LSB设置为“1”。
LSB算法数字水印攻击提取
LSB算法数字水印攻击提取包括以下步骤:
-
**图像预处理:**对图像进行预处理,例如灰度化、去噪和锐化,以提高提取的鲁棒性。
-
**LSB提取:**遍历图像中的每个像素,并提取其LSB。提取的LSB序列就是嵌入的信息。
-
**后处理:**对提取的信息进行后处理,例如错误纠正和译码,以恢复原始信息。
基于直方图的特征提取
为了提高LSB算法数字水印提取的鲁棒性,本文提出了一个基于直方图的特征提取方法。该方法将提取的LSB序列划分为多个子块,并计算每个子块的直方图。直方图反映了LSB序列中不同比特值的分布,可以用来区分嵌入的水印和攻击噪声。
实验结果
本文在不同图像数据集上对提出的方法进行了实验。实验结果表明,基于直方图的特征提取方法可以显著提高LSB算法数字水印提取的鲁棒性。该方法能够有效地提取嵌入的水印,即使图像受到攻击。
结论
本文介绍了一种基于LSB算法的数字水印嵌入攻击提取方法,并提出了一个基于直方图的特征提取方法来提高提取的鲁棒性。实验结果表明,提出的方法可以有效地提取嵌入的水印,即使图像受到攻击。该方法可以应用于版权保护、内容认证和图像取证等领域。
📣 部分代码
function varargout=watermark_k(varargin)
%Questa funzione inserisce un watermark di caratteri (stringa) all'interno
%di una immagine passata come argomento di input. E' possibile specificare
%anche una chiave numerica tra gli argomenti di input.
%Sono abbilgatori almeno due parametri di input:
% [img_w,str]=watermark_k(img,stringa);
%Restituisce l'immagine watermarked "img_w" ed una opzionale stringa di
%errore "str". Accetta in ingresso l'immagine sulla quale effettuare il
%watermarking e la stringa da inserire. E' possibile aggiungere un terzo
%parametro di input che ne rappresenta la chiave numerica:
% watermark_k(img,stringa,key);
if length(varargin)<2 %Controllo il numero di parametri passati in input
return
elseif length(varargin)==3 %Se ?stato specificato un terzo parametro:
rand('seed',varargin{3}); %Fisso il seme della funzione rand
end
img=varargin{1}; %Acquisisco il primo parametro di input
stringa=varargin{2}; %Acquisisco il secondo parametro di input
im=img(:); %Importo l'immagine in un unico vettore colonna
if (length(stringa)+1)<=(length(im)/8) %Controllo se la dimensione dell'immagine ?sufficiente a ospitare la stringa
im=bitand(im,uint8(ones(length(im),1)*254)); %Setto a 0 il bit meno significativo di ogni elemento di im
t_im=uint8(zeros(length(im),1)); %Creo un vettore di appoggio per apportare momentaneamente le modifiche
if length(varargin)==3 %Controllo se ?presente una key:
k=randperm(length(im)); %Creo un vettore di indici utilizzano randperm
end
for i=1:length(stringa) %Per ogni carattere della stringa:
for j=1:8 %Per ogni bit del singolo carattere:
if length(varargin)==3 %Controllo se ?presenre una key:
index=k((i-1)*8 + j); %Calcolo l'indice del pixel da modificare
else %Se non ?presente la key:
index=(i-1)*8 + j; %Calcolo l'indice del pixel da modificare
end
b=bitget(uint8(stringa(i)),j); %Acquisisco il j-esimo bit dell'i-esimo carattere
if(b==1) %Se ?pari a 1:
t_im(index)=bitset(t_im(index),1); %Setto il bit meno significato del pixel indicato da index
end
end
end
%Inserimento di un carattere tappo (fine stringa).
for j=1:8 %Per ogni bit del carattere tappo
if length(varargin)==3 %Controllo se si utilizza una key:
index=k(length(stringa)*8 + j); %Calcolo l'indice
else
index=length(stringa)*8 + j; %Calcolo l'indece senza key
end
t_im(index)=bitset(t_im(index),1); %Aggiorno i bit di t_im
end
r_im=bitor(im,t_im); %Effettuo una or bit a bit tra vettore di appoggio e vettore immagine
[x,y,z]=size(img); %Acquisisco le dimensioni dell'immagine
img_w=reshape(r_im,x,y,z); %Ricostruisco l'immagine watermarked
varargout{1}=img_w; %Restituisco img_w
varargout{2}='WATERMARK INSERITO!'; %Non restituisco errori
else %Nel caso la dimensione dell'immagine non ?sufficiente a contenere "stringa":
varargout{2}='Stringa troppo lunga per l''immagine selezionata!'; %Restituisco un errore
end
end
⛳️ 运行结果
🔗 参考文献
[1] 孙祥余.基于可逆信息隐藏的免疫数字水印研究[D].重庆大学[2024-03-15].DOI:10.7666/d.y2154437.
[2] 孙祥余.基于可逆信息隐藏的免疫数字水印研究[D].重庆大学,2013.
[3] 曾宪庭.基于图像的无损信息隐藏技术研究[D].浙江大学,2011.DOI:CNKI:CDMD:1.1011.056714.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类