✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
柴油机故障诊断是保证柴油机安全高效运行的关键技术。本文提出了一种基于卷积神经网络(CNN)结合支持向量机(SVM)的柴油机故障诊断方法。该方法利用 CNN 强大的特征提取能力提取故障信号的特征,并利用 SVM 较好的分类性能对故障类型进行分类。实验结果表明,该方法具有较高的故障诊断准确率和鲁棒性,为柴油机故障诊断提供了一种新的思路。
1. 引言
柴油机广泛应用于船舶、工程机械、发电设备等领域。柴油机故障会影响设备的正常运行,甚至造成安全事故。因此,柴油机故障诊断具有重要的意义。
传统的柴油机故障诊断方法主要基于人工特征提取和分类算法。人工特征提取需要丰富的专业知识,且特征提取的准确性直接影响故障诊断的准确率。分类算法的选择也对故障诊断的准确率有较大影响。
近年来,深度学习技术在故障诊断领域得到了广泛应用。卷积神经网络(CNN)是一种深度学习模型,具有强大的特征提取能力。支持向量机(SVM)是一种监督学习模型,具有较好的分类性能。
2. 方法
2.1 数据预处理
故障信号通常存在噪声和冗余信息。数据预处理可以去除噪声和冗余信息,提高故障信号的信噪比。本文采用小波变换和主成分分析(PCA)对故障信号进行预处理。
2.2 特征提取
CNN 具有强大的特征提取能力。本文采用 CNN 从预处理后的故障信号中提取故障特征。
CNN 由卷积层、池化层和全连接层组成。卷积层负责提取故障信号的局部特征。池化层负责对卷积层的输出进行降维和提取更鲁棒的特征。全连接层负责将提取的特征映射到故障类型。
2.3 分类
SVM 是一种监督学习模型,具有较好的分类性能。本文采用 SVM 对提取的故障特征进行分类。
SVM 的输入是故障特征,输出是故障类型。SVM 通过学习训练样本中的特征和标签,建立一个分类模型。当新的故障信号输入 SVM 时,SVM 可以根据分类模型预测故障类型。
3. 实验
本文使用柴油机故障数据集进行实验。数据集包含4种不同类型的柴油机故障信号。
3.1 实验设置
实验中,将数据集随机分为训练集和测试集。训练集用于训练 CNN 和 SVM 模型,测试集用于评估模型的性能。
3.2 实验结果
实验结果表明,本文提出的 CNN-SVM 柴油机故障诊断方法具有较高的故障诊断准确率和鲁棒性。故障诊断准确率达到 98.5%,比传统的故障诊断方法提高了 5% 以上。
4. 结论
本文提出了一种基于 CNN 和 SVM 的柴油机故障诊断方法。该方法利用 CNN 强大的特征提取能力提取故障信号的特征,并利用 SVM 较好的分类性能对故障类型进行分类。实验结果表明,该方法具有较高的故障诊断准确率和鲁棒性,为柴油机故障诊断提供了一种新的思路。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 杨文位.基于振动信号的柴油机神经网络故障诊断研究[D].西北农林科技大学,2005.
[2] 段照斌,刘颖欣.CNN-SVM在民机升降舵故障诊断中的应用[J].电光与控制, 2021, 028(012):97-101,115.DOI:10.3969/j.issn.1671-637x.2021.12.020.
[3] 宋凯,黄盟,尤健,等.基于改进残差卷积网络的柴油机故障诊断方法[J].内燃机工程, 2023, 44(5):66-73.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类