【图像分割】基于局部活动轮廓算法实现血脉图像分割附Matlab代码

本文介绍了在医学图像处理中,一种结合局部信息和全局约束的血脉图像分割方法,利用局部活动轮廓算法有效地分割复杂血脉结构,尤其在血管疾病诊断和手术规划中有潜在应用。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

图像分割是计算机视觉中的一项重要任务,其目标是将图像划分为具有不同属性的区域。在医学图像处理领域,血脉图像分割对于疾病诊断和治疗计划至关重要。本文介绍了一种基于局部活动轮廓算法的血脉图像分割方法。该算法结合了局部信息和全局约束,可以有效地分割复杂的血脉结构。

引言

血脉图像分割在医学图像处理中具有广泛的应用,例如血管疾病诊断、手术规划和药物输送。然而,由于血脉结构的复杂性和图像噪声的影响,血脉图像分割是一项具有挑战性的任务。

局部活动轮廓算法

局部活动轮廓算法是一种基于能量最小化的图像分割方法。该算法通过迭代地演化一个轮廓曲线来分割图像。轮廓曲线的演化由以下能量函数驱动:

基于局部活动轮廓的血脉图像分割

为了将局部活动轮廓算法应用于血脉图像分割,需要对能量函数进行定制。对于血脉图像,内部能量可以定义为:

该算法在不同血脉图像数据集上进行了测试。实验结果表明,该算法可以有效地分割复杂的血脉结构,并且分割精度高,鲁棒性好。

结论

本文介绍了一种基于局部活动轮廓算法的血脉图像分割方法。该算法结合了局部信息和全局约束,可以有效地分割复杂的血脉结构。该算法在医学图像处理中具有广泛的应用,例如血管疾病诊断、手术规划和药物输送。

📣 部分代码

%  % function local_AC_UM is the localized Chan-Vese's method see TIP 2001.% function local_AC_MS is the localized Antony's Mean Separation method see ICCV 1999  % clc;clear all;close all;imgID =2; % 1,2,3  % choose one of the five test imagesImg = imread([num2str(imgID),'.bmp']);figure,imshow(Img);Img = double(Img(:,:,1));epsilon = 1;switch imgID    case 1        num_it =1000;        rad = 8;        alpha = 0.3;% coefficient of the length term        mask_init  = zeros(size(Img(:,:,1)));        mask_init(15:78,32:95) = 1;        seg = local_AC_MS(Img,mask_init,rad,alpha,num_it,epsilon);    case 2        num_it =800;        rad = 9;        alpha = 0.003;% coefficient of the length term        mask_init = zeros(size(Img(:,:,1)));        mask_init(53:77,56:70) = 1;        seg = local_AC_UM(Img,mask_init,rad,alpha,num_it,epsilon);    case 3        num_it = 1500;        rad = 5;        alpha = 0.001;% coefficient of the length term        mask_init  = zeros(size(Img(:,:,1)));        mask_init(47:80,86:99) = 1;        seg = local_AC_UM(Img,mask_init,rad,alpha,num_it,epsilon);end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值