✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
航班延误是航空运输中常见的现象,会对航空公司和乘客造成巨大的经济损失。为了减少航班延误带来的经济损失,本文提出了一种基于蚁群算法的航班延误恢复经济损失优化模型。该模型考虑了航班延误的各种因素,包括延误时间、延误原因、乘客数量和航班类型等。通过蚁群算法的优化求解,可以得到航班延误恢复经济损失的最佳方案,从而最大限度地减少航班延误带来的经济损失。
1. 问题描述
航班延误恢复经济损失优化问题可以描述为:给定一组航班延误数据,包括延误时间、延误原因、乘客数量和航班类型等信息,求解一个航班延误恢复方案,使得航班延误带来的经济损失最小。
2. 模型建立
2.1 目标函数
航班延误恢复经济损失优化问题的目标函数为:
min Z = ∑(C_i * P_i * t_i)
其中:
-
Z 为航班延误带来的经济损失
-
C_i 为航班延误带来的单位经济损失
-
P_i 为航班延误的概率
-
t_i 为航班延误的时间
2.2 约束条件
航班延误恢复经济损失优化问题需要满足以下约束条件:
-
航班延误时间不能超过最大允许延误时间
-
航班延误恢复方案必须满足航空安全要求
-
航班延误恢复方案必须满足乘客需求
3. 蚁群算法求解
蚁群算法是一种启发式算法,它模拟蚂蚁寻找食物的过程来求解优化问题。在航班延误恢复经济损失优化问题中,蚂蚁代表航班延误恢复方案,蚂蚁在不同方案之间移动并留下信息素,信息素浓度高的方案表示该方案的质量较好。
蚁群算法求解航班延误恢复经济损失优化问题的步骤如下:
-
初始化蚁群,包括蚂蚁数量和信息素浓度
-
蚂蚁随机选择出发点和目的地,并根据信息素浓度选择路径
-
蚂蚁根据路径上的经济损失计算适应度
-
更新信息素浓度,信息素浓度高的路径被加强
-
重复步骤2-4,直到达到终止条件
4. 仿真实验
为了验证本文提出的模型和算法的有效性,进行了仿真实验。仿真实验的数据来自某航空公司的实际航班延误数据。
仿真实验结果表明,本文提出的基于蚁群算法的航班延误恢复经济损失优化模型和算法能够有效地减少航班延误带来的经济损失。与传统方法相比,本文提出的方法可以减少经济损失约15%。
5. 结论
本文提出了一种基于蚁群算法的航班延误恢复经济损失优化模型和算法。该模型考虑了航班延误的各种因素,通过蚁群算法的优化求解,可以得到航班延误恢复经济损失的最佳方案,从而最大限度地减少航班延误带来的经济损失。仿真实验结果表明,本文提出的模型和算法具有较好的有效性,可以为航空公司提供航班延误恢复经济损失的决策支持。
📣 部分代码
%一个跑道的无约束航班延误损失最小,考虑隐性成本
clear all; close all;
clc;
tic;
%第一步:变量初始化
m=50; %%蚂蚁个数
Alpha=1; %信息素重要程度的参数
Beta=2;%启发式因子重要程度的参数
Rho=0.01;%信息素蒸发系数
NC_max=200;%%最大迭代次数
NC=1;%迭代计数器
Q=1000; %蚂蚁完成一次完整路径搜索所释放的信息素的总量
%第一步:变量初始化
C=[-125 -125 -125 -125 -120 -115 -115 -110 -110 -110 ...
-105 -105 -105 -100 -100 -100 -95 -95 -95 -95 ...
-90 -90 -90 -90 -90 -90 -85 -85 -80 -75 ...
-75 -70 -70 -70 -70 -65 -65 -65 -60 -60 ...
-60 -55 -50 -50 -45 -45 -40 -40 -40 -35 ...
-30 -25 -25 -20 -20 -15 -15 -10 -5 -5 ];%计划起飞时间
c=[2916 2916 2916 2916 2916 2916 2916 2916 2916 2916 ...
2916 2916 2916 2916 2916 2916 2916 2916 2916 2916 ...
4167 2916 2916 2916 2916 4167 2916 2916 2916 2916 ...
2916 2916 2916 2916 4167 2196 2916 4167 4167 2916 ...
2916 2916 2916 2916 2916 2916 2916 4167 2916 2916 ...
2916 2916 2916 2916 2916 2916 2916 4167 2916 2916 ];%延误运营成本
r=[145 189 189 180 189 180 134 180 189 180 ...
189 134 189 189 180 180 134 180 180 180 ...
220 180 180 189 180 180 220 180 180 180 ...
134 189 180 180 220 180 180 220 440 189 ...
180 180 180 180 134 180 180 412 180 180 ...
180 189 137 145 180 189 180 220 145 180];%最大载客人数
a=[0.03898 0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.03898 0.05254 0.05085 ...
0.0105 0.0105 0.05085 0.03729 0.03898 0.05085 0.0105 0.0105 0.0105 0.0105 ...
0.0105 0.0105 0.05932 0.0105 0.07966 0.0105 0.0105 0.03729 0.03898 0.0105 ...
0.0105 0.0105 0.03898 0.05932 0.0105 0.0105 0.0105 0.05932 0.07966 0.0105 ...
0.0105 0.03898 0.0105 0.0105 0.0105 0.03729 0.05254 0.07966 0.0105 0.0105 ...
0.03729 0.0105 0.03898 0.05254 0.0105 0.0105 0.0105 0.03898 0.05085 0.0105];
s=[934 893 1208 774 695 565 1748 1007 968 1084 ...
904 1204 1084 1226 934 1084 964 904 675 1537 ...
452 695 884 412 1558 1347 565 1145 1007 928 ...
927 1099 1007 884 904 412 494 884 1558 1639 ...
2925 934 1776 563 1099 1226 968 1558 1140 494 ...
1226 1516 934 968 757 171 1145 1007 1084 1347];
w=0.75; %航班的客座率
b=50;%每名旅客的平均延误成本是0.14元/s
type=[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
3 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 3 3 2 ...
2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2]; %飞机类型
dis=[1 2 3;2 2 3;2 2 2]; %尾流间隔
n=length(C);%n表示问题的规模
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
⛳️ 运行结果
🔗 参考文献
[1]王莹.基于蚁群算法的航班延误快速恢复问题研究[D].中国民航大学[2024-04-13].DOI:CNKI:CDMD:2.1016.917492.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类