✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
变分模式分解 (VMD) 是一种自适应信号分解方法,它可以将信号分解为多个本征模态函数 (IMF)。与传统的信号分解方法,如经验模态分解 (EMD) 和小波分解相比,VMD 具有以下优点:
-
自适应性: VMD 不需要预先设定 IMF 的数量,它可以根据信号的特性自动确定 IMF 的数量。
-
鲁棒性: VMD 对噪声和非平稳信号的鲁棒性较强。
-
计算效率: VMD 的计算效率较高,尤其适用于大规模数据的处理。
理论基础
VMD 的理论基础是变分方法。它将信号分解问题转化为一个变分问题,并通过求解变分问题来获得 IMF。VMD 的目标函数如下:
算法流程
VMD 算法的流程如下:
-
初始化 IMF 和中心频率。
-
迭代更新 IMF 和中心频率,直到满足收敛条件。
-
将更新后的 IMF 作为最终结果输出。
应用
VMD 已经被广泛应用于各种领域,包括:
-
信号处理
-
图像处理
-
生物医学工程
-
机械故障诊断
总结
VMD 是一种强大的信号分解方法,它具有自适应性、鲁棒性和计算效率高等优点。VMD 已经被广泛应用于各种领域,并取得了良好的效果。
⛳️ 运行结果
🔗 参考文献
[1]江星星,宋秋昱,杜贵府,等.变分模式分解方法研究与应用综述[J].仪器仪表学报, 2023.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类