【TSP问题】基于遗传算法求解单起点多终点多旅行商最短距离问题MTSP附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

旅行商问题 (Traveling Salesperson Problem, TSP) 是一个经典的组合优化问题,其目标是在给定一组城市的情况下,找到一条访问所有城市一次且仅一次并回到起点的最短路径。然而,在实际应用中,许多场景需要解决更复杂的多旅行商问题 (Multi-Traveling Salesperson Problem, MTSP),其中有多个旅行商需要从同一个起点出发,访问所有城市并返回起点。

本文将介绍一种基于遗传算法的解决方案,用于解决单起点多终点多旅行商问题 (MTSP)。该问题相较于传统的 TSP 问题更具挑战性,因为需要考虑多个旅行商的路径安排,同时还要保证所有城市都被访问一次且仅一次。

问题描述

MTSP 问题可以描述如下:

  • 给定一个起点 S 和 n 个终点 {C1, C2, ..., Cn}。

  • 有 m 个旅行商 {T1, T2, ..., Tm},每个旅行商都从起点 S 出发,访问一些终点,最后回到起点 S。

  • 每个旅行商访问的终点集合必须覆盖所有 n 个终点,且每个终点只能被访问一次。

  • 目标是找到一个最佳的路径方案,使得所有旅行商的总路径距离最小。

遗传算法介绍

遗传算法 (Genetic Algorithm, GA) 是一种启发式搜索算法,模拟了生物进化中的自然选择和遗传机制。其基本流程如下:

  1. 初始化种群: 随机生成一组初始解,称为种群。每个解被称为染色体,包含一系列基因,代表旅行商的路线安排。

  2. 适应度评估: 对每个染色体进行评估,计算其适应度值,代表该解的优劣程度。

  3. 选择: 根据适应度值,选择一些优秀的染色体进行繁殖。

  4. 交叉: 选择两个父染色体,通过交换部分基因信息,生成新的子代染色体。

  5. 变异: 对部分子代染色体进行随机修改,增加种群的多样性。

  6. 替换: 用新生成的子代染色体替换部分父代染色体,形成新的种群。

  7. 迭代: 重复步骤 2 到 6,直到找到最优解或者达到预设迭代次数。

基于遗传算法的 MTSP 解决方案

  1. 染色体表示: 每个染色体代表一个旅行商的路线安排,由一串整数序列组成,每个整数代表一个终点。例如,染色体 [1, 3, 2, 5, 4] 表示一个旅行商访问终点 C1、C3、C2、C5、C4 后返回起点 S。

  2. 适应度函数: 适应度函数用于评估每个染色体的优劣程度。对于 MTSP 问题,适应度函数通常定义为所有旅行商总路径距离的倒数,即距离越短,适应度值越高。

  3. 选择策略: 常用的选择策略包括轮盘赌选择、锦标赛选择等。

  4. 交叉操作: 常用的交叉操作包括单点交叉、两点交叉等。

  5. 变异操作: 常用的变异操作包括交换变异、插入变异等。

算法流程

  1. 初始化: 随机生成初始种群,每个染色体代表一个旅行商的路线安排。

  2. 迭代: 循环执行以下步骤,直到满足终止条件:

    • 适应度评估: 计算每个染色体的适应度值。

    • 选择: 根据适应度值选择一些优秀的染色体进行繁殖。

    • 交叉: 选择两个父染色体,进行交叉操作生成子代染色体。

    • 变异: 对部分子代染色体进行变异操作。

    • 替换: 用新生成的子代染色体替换部分父代染色体,形成新的种群。

  3. 结果: 输出适应度值最高的染色体,即最佳路线安排方案。

算法优化

为了提高遗传算法求解 MTSP 问题的效率,可以采用以下优化策略:

  • 种群初始化: 采用启发式算法生成初始种群,提高种群的质量。

  • 适应度函数: 使用更合理的适应度函数,更好地反映解的优劣程度。

  • 选择策略: 选择合适的选择策略,保证种群的多样性和收敛速度。

  • 交叉操作: 选择合适的交叉操作,有效地生成新的解。

  • 变异操作: 选择合适的变异操作,增加种群的多样性。

结论

本文介绍了一种基于遗传算法的解决方案,用于解决单起点多终点多旅行商问题 (MTSP)。该算法通过模拟生物进化机制,在迭代过程中不断优化路线安排方案,最终找到最佳路径方案。

该算法可以用于多种实际应用场景,例如物流配送、城市规划、资源分配等。未来,可以进一步优化算法,提高其效率和性能,以更好地解决更复杂的多旅行商问题。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值