✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在数字通信系统中,误码率(BER,Bit Error Rate)是一个重要的性能指标,它衡量了接收端数据中错误比特的比例。16QAM(16-Quadrature Amplitude Modulation)是一种常用的调制方式,其在高频谱效率方面具有优势,但同时对噪声和干扰也更加敏感。因此,对16QAM误码率进行仿真分析,可以更好地了解其在不同信噪比(SNR)下的性能表现,为系统设计提供参考。
本文将介绍如何利用蒙特卡洛方法对16QAM误码率进行仿真。
1. 16QAM调制原理
16QAM调制将每个符号映射到一个复数平面上的16个点,每个点对应一个4比特的符号。每个点在水平轴和垂直轴上都有4个不同的取值,从而实现了16个不同的符号映射。
2. 蒙特卡洛方法
蒙特卡洛方法是一种利用随机数进行数值计算的方法。在误码率仿真中,可以使用蒙特卡洛方法模拟信道噪声,并通过大量随机数据进行统计分析,得到误码率的估计值。
3. 误码率仿真步骤
以下步骤介绍如何使用蒙特卡洛方法进行16QAM误码率仿真:
(1) 生成随机数据
首先,生成一组随机的4比特符号,作为发送端的数据源。
(2) 16QAM调制
将生成的随机数据按照16QAM映射规则映射到复数平面上的16个点。
(3) 添加噪声
根据设定的信噪比(SNR)添加高斯噪声到调制后的信号。
(4) 16QAM解调
对接收到的信号进行16QAM解调,得到接收端的4比特符号。
(5) 误码率统计
比较发送端和接收端的符号,计算误码率。
(6) 重复步骤 (1) 到 (5)
重复上述步骤多次,每次生成不同的随机数据,并统计每次的误码率。
(7) 误码率曲线
最后,根据不同信噪比下得到的误码率数据,绘制误码率曲线。
4. 仿真结果
通过上述仿真代码,可以得到16QAM在不同信噪比下的误码率曲线。该曲线显示,随着信噪比的增加,误码率会下降。这表明,信噪比越高,通信系统的性能越好,误码率越低。
5. 结论
本文介绍了使用蒙特卡洛方法对16QAM误码率进行仿真分析的方法。通过仿真,可以得到16QAM在不同信噪比下的性能表现,为系统设计提供参考。
⛳️ 运行结果
🔗 参考文献
[1] 蒙炜,韩艳艳.基于蒙特卡洛方法的非视距紫外光通信的误码率分析[C]//全国电波传播学术讨论会.中国电子学会, 2013.
[2] 耿贤辈.基于蒙特卡洛方法的WCDMA无线网络设计仿真研究[D].南京邮电大学[2024-06-11].DOI:CNKI:CDMD:2.1013.168352.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类