✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着工业生产的不断发展,设备故障问题日益凸显,对其进行精准识别和快速诊断成为了保障生产安全、提高生产效率的关键。本文提出了一种基于格拉姆角场 (Gram Angular Field, GAF) 和双通道卷积神经网络 (Parallel Convolutional Neural Network, PCNN) 融合注意力机制 (Multi-head Self-Attention, MSA) 的新型故障识别模型 GAF-PCNN-MSA。该模型通过 GAF 提取故障信号的全局特征,利用 PCNN 挖掘局部特征,并结合 MSA 机制对特征进行加权融合,有效提升了故障识别的准确性和鲁棒性。实验结果表明,GAF-PCNN-MSA 模型在不同类型的工业设备故障识别任务中均取得了显著的效果,优于现有的主流方法。
关键词: 故障识别,格拉姆角场,双通道卷积神经网络,注意力机制,深度学习
1. 引言
工业设备故障是导致生产停滞、经济损失的重要原因,因此对故障的实时监测和识别具有重要意义。传统故障诊断方法主要依赖专家经验和人工规则,存在效率低、成本高、难以应对复杂故障等问题。近年来,随着深度学习技术的快速发展,基于深度学习的故障识别方法逐渐成为研究热点。
目前,已有研究将卷积神经网络 (CNN) 应用于故障识别,但传统 CNN 难以有效提取全局特征,导致模型泛化能力不足。为了解决这一问题,本文提出了一种基于格拉姆角场 (GAF) 和双通道卷积神经网络 (PCNN) 融合注意力机制 (MSA) 的新型故障识别模型 GAF-PCNN-MSA。该模型利用 GAF 提取故障信号的全局特征,利用 PCNN 挖掘局部特征,并结合 MSA 机制对特征进行加权融合,有效提升了故障识别的准确性和鲁棒性。
2. 模型结构
GAF-PCNN-MSA 模型主要由以下几部分组成:
-
格拉姆角场 (GAF) 模块: 该模块利用格拉姆角场来提取故障信号的全局特征。GAF 是一种基于矩阵分解的特征提取方法,能够有效捕捉信号之间的相似性,从而实现对全局特征的提取。
-
双通道卷积神经网络 (PCNN) 模块: 该模块采用两个并行的 CNN 结构,分别提取故障信号的时域和频域特征。通过两个通道的互补信息,PCNN 可以更加全面地挖掘局部特征。
-
注意力机制 (MSA) 模块: 该模块利用多头自注意力机制 (MSA) 对 GAF 和 PCNN 模块提取的特征进行加权融合。MSA 可以根据特征的重要性自动分配权重,从而提高模型的特征提取能力。
-
分类器: 最后,模型采用全连接层和 Softmax 函数进行故障分类。
3. 模型训练和评估
模型训练采用反向传播算法,通过最小化损失函数来优化模型参数。评估指标采用准确率 (Accuracy)、精确率 (Precision)、召回率 (Recall) 和 F1 值 (F1-score) 等。
4. 实验结果与分析
本文在多个公开数据集上进行了实验,并将 GAF-PCNN-MSA 模型与其他主流故障识别方法进行比较。实验结果表明:
-
GAF-PCNN-MSA 模型在不同类型的工业设备故障识别任务中均取得了显著的效果,优于现有的主流方法。
-
GAF 模块有效提升了模型的泛化能力,PCNN 模块提高了模型对局部特征的提取能力,MSA 机制增强了模型的特征表达能力。
5. 结论
本文提出的 GAF-PCNN-MSA 模型有效融合了 GAF、PCNN 和 MSA 机制,在多个公开数据集上取得了显著效果,表明该模型具有良好的故障识别能力。未来,我们将进一步探索 GAF-PCNN-MSA 模型的应用场景,并致力于提高模型的鲁棒性和泛化能力。
⛳️ 运行结果
🔗 参考文献
本程序参考以下中文EI期刊,程序注释清晰,干货满满。
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类