2024首发原创! 基于格拉姆角场和双通道卷积神经网络融合注意力机制GAF-PCNN-MSA实现故障识别附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

随着工业生产的不断发展,设备故障问题日益凸显,对其进行精准识别和快速诊断成为了保障生产安全、提高生产效率的关键。本文提出了一种基于格拉姆角场 (Gram Angular Field, GAF) 和双通道卷积神经网络 (Parallel Convolutional Neural Network, PCNN) 融合注意力机制 (Multi-head Self-Attention, MSA) 的新型故障识别模型 GAF-PCNN-MSA。该模型通过 GAF 提取故障信号的全局特征,利用 PCNN 挖掘局部特征,并结合 MSA 机制对特征进行加权融合,有效提升了故障识别的准确性和鲁棒性。实验结果表明,GAF-PCNN-MSA 模型在不同类型的工业设备故障识别任务中均取得了显著的效果,优于现有的主流方法。

关键词: 故障识别,格拉姆角场,双通道卷积神经网络,注意力机制,深度学习

1. 引言

工业设备故障是导致生产停滞、经济损失的重要原因,因此对故障的实时监测和识别具有重要意义。传统故障诊断方法主要依赖专家经验和人工规则,存在效率低、成本高、难以应对复杂故障等问题。近年来,随着深度学习技术的快速发展,基于深度学习的故障识别方法逐渐成为研究热点。

目前,已有研究将卷积神经网络 (CNN) 应用于故障识别,但传统 CNN 难以有效提取全局特征,导致模型泛化能力不足。为了解决这一问题,本文提出了一种基于格拉姆角场 (GAF) 和双通道卷积神经网络 (PCNN) 融合注意力机制 (MSA) 的新型故障识别模型 GAF-PCNN-MSA。该模型利用 GAF 提取故障信号的全局特征,利用 PCNN 挖掘局部特征,并结合 MSA 机制对特征进行加权融合,有效提升了故障识别的准确性和鲁棒性。

2. 模型结构

GAF-PCNN-MSA 模型主要由以下几部分组成:

  • 格拉姆角场 (GAF) 模块: 该模块利用格拉姆角场来提取故障信号的全局特征。GAF 是一种基于矩阵分解的特征提取方法,能够有效捕捉信号之间的相似性,从而实现对全局特征的提取。

  • 双通道卷积神经网络 (PCNN) 模块: 该模块采用两个并行的 CNN 结构,分别提取故障信号的时域和频域特征。通过两个通道的互补信息,PCNN 可以更加全面地挖掘局部特征。

  • 注意力机制 (MSA) 模块: 该模块利用多头自注意力机制 (MSA) 对 GAF 和 PCNN 模块提取的特征进行加权融合。MSA 可以根据特征的重要性自动分配权重,从而提高模型的特征提取能力。

  • 分类器: 最后,模型采用全连接层和 Softmax 函数进行故障分类。

3. 模型训练和评估

模型训练采用反向传播算法,通过最小化损失函数来优化模型参数。评估指标采用准确率 (Accuracy)、精确率 (Precision)、召回率 (Recall) 和 F1 值 (F1-score) 等。

4. 实验结果与分析

本文在多个公开数据集上进行了实验,并将 GAF-PCNN-MSA 模型与其他主流故障识别方法进行比较。实验结果表明:

  • GAF-PCNN-MSA 模型在不同类型的工业设备故障识别任务中均取得了显著的效果,优于现有的主流方法。

  • GAF 模块有效提升了模型的泛化能力,PCNN 模块提高了模型对局部特征的提取能力,MSA 机制增强了模型的特征表达能力。

5. 结论

本文提出的 GAF-PCNN-MSA 模型有效融合了 GAF、PCNN 和 MSA 机制,在多个公开数据集上取得了显著效果,表明该模型具有良好的故障识别能力。未来,我们将进一步探索 GAF-PCNN-MSA 模型的应用场景,并致力于提高模型的鲁棒性和泛化能力。

⛳️ 运行结果

🔗 参考文献

本程序参考以下中文EI期刊,程序注释清晰,干货满满。

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值