✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着工业自动化程度的不断提高,设备故障识别成为确保生产安全、提高生产效率的关键环节。传统故障识别方法依赖于专家经验,存在效率低、泛化能力差等问题。近年来,基于深度学习的故障识别方法逐渐成为研究热点,其强大的特征提取能力和非线性拟合能力为故障识别带来了新的突破。本文提出了一种基于格拉姆角场结合卷积神经网络多头注意力机制的故障识别模型GAF-CNN-Multihead-Attention,旨在利用多特征信息提高故障识别的准确性和鲁棒性。该模型首先将多特征数据通过格拉姆角场进行特征提取,增强特征表达能力;然后利用卷积神经网络提取时序特征,并结合多头注意力机制,捕捉不同特征之间的关联性,提高模型的识别精度。实验结果表明,GAF-CNN-Multihead-Attention模型在不同类型的故障识别任务中均取得了优异的性能,验证了其有效性和可行性。
关键词: 故障识别,格拉姆角场,卷积神经网络,多头注意力机制,多特征
1. 引言
工业设备的正常运行对于企业生产效率和经济效益至关重要。然而,由于设备自身老化、环境因素、操作失误等原因,设备故障时有发生,不仅会造成生产停滞,还会带来巨大的经济损失和安全隐患。因此,及时准确地识别设备故障,并采取相应的措施进行维护,对于保障工业生产安全、提高设备可靠性具有重要意义。
传统的故障识别方法主要依赖于专家经验,通过分析设备运行参数、故障日志等信息,人工判断故障类型。这种方法存在以下缺点:
-
依赖专家经验,识别效率低,受主观因素影响较大;
-
难以处理复杂多样的故障类型,泛化能力差;
-
难以提取隐含的故障特征信息,识别精度有限。
近年来,随着深度学习技术的快速发展,基于深度学习的故障识别方法逐渐成为研究热点。深度学习具有强大的特征提取能力和非线性拟合能力,可以从海量数据中自动学习到复杂的故障特征,并建立准确的故障识别模型。然而,现有的基于深度学习的故障识别方法也存在一些局限性:
-
多数方法仅利用单一特征信息进行识别,忽略了不同特征之间的关联性;
-
模型参数过多,容易出现过拟合现象;
-
对噪声数据敏感,鲁棒性较差。
为了克服上述问题,本文提出了一种基于格拉姆角场结合卷积神经网络多头注意力机制的故障识别模型GAF-CNN-Multihead-Attention。该模型利用格拉姆角场提取多特征信息,增强特征表达能力;利用卷积神经网络提取时序特征,并结合多头注意力机制,捕捉不同特征之间的关联性,提高模型的识别精度。
2. GAF-CNN-Multihead-Attention模型
GAF-CNN-Multihead-Attention模型的整体结构如图1所示,主要由三个部分组成: 格拉姆角场特征提取层、卷积神经网络特征提取层、多头注意力机制特征融合层。
2.1 格拉姆角场特征提取层
格拉姆角场 (Gramian Angular Field,GAF) 是一种将时间序列数据转化为图像的工具,可以有效地捕捉时间序列数据的局部特征和全局特征。GAF通过计算时间序列数据中各时刻之间的角度,生成一个矩阵,该矩阵可以被视为图像进行处理。
本模型利用GAF提取多特征信息,包括振动信号、电流信号、温度信号等。首先,将每个特征数据进行标准化处理,然后分别利用GAF将其转化为图像。最后,将不同特征的GAF图像拼接成一个新的图像,作为模型的输入。
2.2 卷积神经网络特征提取层
卷积神经网络 (Convolutional Neural Network,CNN) 是一种强大的特征提取工具,可以从输入数据中提取抽象的特征信息。本模型采用多层卷积神经网络来提取GAF图像中的时序特征。卷积层采用不同的卷积核大小和步长,可以提取不同尺度的特征信息。池化层可以降低特征维度,防止过拟合。
2.3 多头注意力机制特征融合层
多头注意力机制 (Multihead Attention) 是一种自注意力机制,可以捕捉不同特征之间的关联性,并根据特征的重要性进行加权融合。本模型利用多头注意力机制融合卷积神经网络提取的特征信息,提高模型的识别精度。
3. 实验验证
为了验证GAF-CNN-Multihead-Attention模型的有效性,本文进行了两个实验:
3.1 实验数据集
实验采用开源的机械设备故障数据集进行测试。数据集包含不同类型的机械设备在不同运行状态下的振动信号、电流信号、温度信号等数据。
3.2 实验结果
实验结果表明,GAF-CNN-Multihead-Attention模型在不同类型的故障识别任务中均取得了优异的性能,与其他方法相比,具有更高的识别精度和鲁棒性。
4. 结论
本文提出了一种基于格拉姆角场结合卷积神经网络多头注意力机制的故障识别模型GAF-CNN-Multihead-Attention。该模型利用格拉姆角场提取多特征信息,利用卷积神经网络提取时序特征,并结合多头注意力机制,捕捉不同特征之间的关联性,提高模型的识别精度。实验结果表明,GAF-CNN-Multihead-Attention模型在不同类型的故障识别任务中均取得了优异的性能,验证了其有效性和可行性。
⛳️ 运行结果
🔗 参考文献
[1] 李延强,韩家浩.基于格拉姆角场和卷积神经网络的斜拉索损伤识别研究[J].石家庄铁道大学学报(自然科学版), 2023, 36(4):1-7.
[2] 姚立,孙见君,马晨波.基于格拉姆角场和CNN-RNN的滚动轴承故障诊断方法[J].轴承, 2022(002):000.
[3] 李宗源,陈谦,钱倍奇,等.基于格拉姆角场和并行CNN的逆变器开关管健康诊断方法,装置及系统.CN202211331412.4[2024-06-21].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类