1 简介

提出一种基于郊狼优化算法(COA)和支持向量机(SVM)的股价预测方法.针对SVM预测模型参数难以确定的问题,采用COA算法对SVM中惩罚因子及核函数参数进行优化,构建COA-SVM股价预测模型。

支持向量机是利用已知数据类别的样本为训练样本,寻找同类数据的空间聚集特征,从而对测试样本进行分类验证,通过验证可将分类错误的数据进行更正。本文以体检数据为数据背景,首先通过利用因子分析将高维数据进行降维,由此将所有指标整合成几个综合性指标;为降低指标之间的衡量标准所引起的误差,本文利用 MATLAB软件将数据进行归一化处理,结合聚类分析将数据分类;最后本文利用最小二乘支持向量机分类算法进行分类验证,从而计算出数据分类的准确率,并验证了数据分类的准确性和合理性。

【SVM预测】基于郊狼算法改进SVM实现数据回归预测附matlab代码_scala

【SVM预测】基于郊狼算法改进SVM实现数据回归预测附matlab代码_scala_02

2 部分代码


          
          
function [fbst, xbst, performance] = hho( objective, d, lmt, n, T, S)
%Harris hawks optimization algorithm
% inputs:
% objective - function handle, the objective function
% d - scalar, dimension of the optimization problem
% lmt - d-by-2 matrix, lower and upper constraints of the decision varable
% n - scalar, swarm size
% T - scalar, maximum iteration
% S - scalar, times of independent runs
% data: 2021-05-09
% author: elkman, github.com/ElkmanY/
%% Levy flight
beta = 1.5;
sigma = ( gamma(1+beta)*sin(pi*beta/2)/gamma((1+beta)/2)*beta*2^((beta-1)/2) ).^(1/beta);
Levy = @(x) 0.01*normrnd(0,1,d,x)*sigma./abs(normrnd(0,1,d,x)).^(1/beta);
%% algorithm procedure
tic;
for s = 1:S
%% Initialization
X = lmt(:,1) + (lmt(:,2) - lmt(:,1)).*rand(d,n);
for t = 1:T
F = objective(X);
[f_rabbit(s,t), i_rabbit] = min(F);
x_rabbit(:,t,s) = X(:,i_rabbit);
xr = x_rabbit(:,t,s);
J = 2*(1-rand(d,1));
E0 = 2*rand(1,n)-1;
E(t,:) = 2*E0*(1-t/T);
absE = abs(E(t));
p1 = absE>=1; %eq(1)
r = rand(1,n);
p2 = (r>=0.5) & (absE>=0.5) & (absE<1); %eq(4)
p3 = (r>=0.5) & (absE<0.5); %eq(6)
p4 = (r<0.5) & (absE>=0.5) & (absE<1); %eq(10)
p5 = (r<0.5) & (absE<0.5); %eq(11)
%% update locations
rh = randi([1,n],1,n);
flag1 = rand(1,n)>=0.5;
Y = xr - E(t,:).*abs( J.*xr - X );
Z = Y + rand(d,n).*Levy(n);
flag2 = (objective(Y)<objective(Z)) & (objective(Y)<F);
flag3 = (objective(Y)>objective(Z)) & (objective(Z)<F);
flag4 = (~flag2) & (~flag3);
X_ = p1.*( (X(:,rh) - rand(1,n).*abs( X(:,rh) - 2*rand(1,n).*X )).*flag1 +...
((X(:,rh) - mean(X)) - rand(1,n).*( lmt(:,1) + (lmt(:,2) - lmt(:,1)).*rand(d,n) )).*(~flag1) )...
+ p2.*( xr - X - E(t,:).*abs( J.*xr - X ) )...
+ p3.*( xr - E(t,:).*abs( xr - X ) )...
+ p4.*( Y.*flag2 + Z.*flag3 + ( lmt(:,1) + (lmt(:,2) - lmt(:,1)).*rand(d,n) ).*flag4 )...
+ p5.*( Y.*flag2 + Z.*flag3 + ( lmt(:,1) + (lmt(:,2) - lmt(:,1)).*rand(d,n) ).*flag4 );
X_(:,i_rabbit) = xr;
X = X_;
end
end
%% Êä³ö-outputs
performance = [min(f_rabbit(:,T));mean(f_rabbit(:,T));std(f_rabbit(:,T))];
timecost = toc;
[fbst, ibst] = min(f_rabbit(:,T));
xbst = x_rabbit(:,T,ibst);
%% »æͼ-plot data
% Convergence Curve
figure('Name','Convergence Curve');
box on
semilogy(1:T,mean(f_rabbit,1),'b','LineWidth',1.5);
xlabel('Iteration','FontName','Aril');
ylabel('Fitness/Score','FontName','Aril');
title('Convergence Curve','FontName','Aril');
if d == 2
% Trajectory of Global Optimal
figure('Name','Trajectory of Global Optimal');
x1 = linspace(lmt(1,1),lmt(1,2));
x2 = linspace(lmt(2,1),lmt(2,2));
[X1,X2] = meshgrid(x1,x2);
V = reshape(objective([X1(:),X2(:)]'),[size(X1,1),size(X1,1)]);
contour(X1,X2,log10(V),100); % notice log10(V)
hold on
plot(x_rabbit(1,:,1),x_rabbit(2,:,1),'r-x','LineWidth',1);
hold off
xlabel('\it{x}_1','FontName','Time New Roman');
ylabel('\it{x}_2','FontName','Time New Roman');
title('Trajectory of Global Optimal','FontName','Aril');
end
end
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.

3 仿真结果

【SVM预测】基于郊狼算法改进SVM实现数据回归预测附matlab代码_scala_03

4 参考文献

[1]杨建新, 兰小平, 姚志强,等. 基于郊狼算法优化的LSSVM多工序质量预测方法[J]. 制造业自动化, 2021, 43(12):5.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【SVM预测】基于郊狼算法改进SVM实现数据回归预测附matlab代码_scala_04