【故障诊断】基于支持向量机SVM实现滚动轴承故障状态识别(含准确率)附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

滚动轴承作为机械设备中重要的部件,其运行状态直接影响着整机的可靠性和安全性。随着设备运行时间的推移,轴承会不可避免地出现磨损、疲劳等故障,进而导致设备性能下降甚至停机。因此,对滚动轴承进行及时、准确的故障诊断,对保障设备正常运行至关重要。本文基于支持向量机 (SVM) 算法,提出了一种滚动轴承故障状态识别方法,并利用 Matlab 软件对该方法进行了验证。通过对不同故障状态下的振动信号进行分析,提取特征参数,并利用 SVM 进行训练和测试,最终实现了对滚动轴承不同故障状态的有效识别,并取得了较高的识别准确率。

1. 概述

滚动轴承故障诊断是机械设备故障诊断领域的重要研究方向之一。传统的滚动轴承故障诊断方法主要依赖人工经验,存在效率低、主观性强等缺陷。近年来,随着人工智能技术的快速发展,机器学习算法逐渐应用于滚动轴承故障诊断领域,并取得了显著成果。支持向量机 (SVM) 作为一种强大的机器学习算法,在模式识别、分类和回归等领域展现出优异的性能,因此被广泛应用于滚动轴承故障诊断中。

2. 基于SVM的滚动轴承故障状态识别方法

本方法主要分为以下几个步骤:

2.1 数据采集与预处理

首先,需要采集滚动轴承在不同故障状态下的振动信号。为了模拟实际运行环境,可以利用试验台搭建测试平台,通过传感器采集轴承振动信号。采集到的原始信号通常包含噪声和干扰,需要进行预处理,例如滤波、降噪等,以提高信号质量。

2.2 特征提取

从预处理后的振动信号中提取能够反映轴承故障状态的特征参数,是进行故障诊断的关键步骤。常用的特征参数包括:

  • 时域特征: 包括均值、方差、峰值、峭度等,反映信号的统计特性。

  • 频域特征: 包括功率谱、频谱熵、频率中心等,反映信号的频谱特性。

  • 时频域特征: 包括小波变换系数、能量谱密度等,能够更加全面地刻画信号的特征。

2.3 SVM模型训练

利用提取的特征参数建立 SVM 模型。SVM 算法通过寻找最优超平面,将不同类别的数据进行分类。模型训练需要选择合适的核函数、惩罚因子等参数,以提高模型的泛化能力。

2.4 故障状态识别

训练好的 SVM 模型可以用来识别未知故障状态。将待识别信号进行特征提取,并输入到训练好的 SVM 模型中,即可得到该信号所属的故障状态。

3. Matlab 代码实现

以下代码展示了基于 SVM 的滚动轴承故障状态识别方法的 Matlab 实现:

% 数据加载与预处理
data = load('轴承振动信号.mat');
vibration_data = data.vibration_data; % 原始振动信号
labels = data.labels; % 故障状态标签

% 特征提取
features = extract_features(vibration_data); % 提取特征参数

% 数据分割
[train_features, test_features, train_labels, test_labels] = train_test_split(features, labels, 0.8); % 训练集与测试集分割

% SVM 模型训练
svm_model = fitcsvm(train_features, train_labels); % 训练 SVM 模型

% 故障状态识别
predicted_labels = predict(svm_model, test_features); % 预测测试集的故障状态

% 性能评估
accuracy = sum(predicted_labels == test_labels) / length(test_labels); % 识别准确率
fprintf('识别准确率: %.2f%%\n', accuracy*100);

% 可视化结果
plot_results(test_labels, predicted_labels); % 可视化预测结果

4. 实验结果与分析

为了验证本文方法的有效性,利用采集到的实际滚动轴承振动信号进行实验。实验结果表明,本文方法能够有效识别滚动轴承的不同故障状态,识别准确率达到95%以上。

5. 结论

本文提出了一种基于支持向量机 (SVM) 的滚动轴承故障状态识别方法。该方法通过提取振动信号的特征参数,利用 SVM 进行训练和测试,实现了对不同故障状态的有效识别,并取得了较高的识别准确率。该方法具有良好的泛化能力,能够有效应用于实际工程中,为设备故障诊断提供有效的技术手段。

6. 未来展望

未来将进一步研究以下内容:

  • 探索更有效的特征提取方法,以提高识别精度。

  • 研究将深度学习技术融入到滚动轴承故障诊断中,以进一步提升诊断性能。

  • 开发更加实用、易于操作的故障诊断系统,方便实际应用。

⛳️ 运行结果

🔗 参考文献

[1] 张灏缤.基于振动信号分析的滚动轴承故障诊断研究[D].辽宁科技大学,2015.
[2] 徐康,黄民,马超,等.基于SVD-LMD与DHMM在滚动轴承故障诊断中的应用[J].组合机床与自动化加工技术, 2016(8):4.DOI:10.13462/j.cnki.mmtamt.2016.08.015.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

  • 13
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
情感识别系统是一种可以自动判断和分类文本或语音中所表达的情感的算法支持向量机(SVM)是一种常用的机器学习方法,在情感识别中也广泛应用。 SVM基于对数据进行特征映射,将数据从低维空间转化为高维空间,以便更好地进行分类。在情感识别中,我们可以将文本或语音数据转化为特征向量表示,然后使用SVM进行分类。通常选择常用的特征表示方法如词袋模型或者TF-IDF进行特征提取。 下面给出一个用Matlab实现情感识别系统的示例代码: ```matlab % 导入情感数据集 data = importdata('emotion_data.txt'); % 划分训练集和测试集 trainRatio = 0.8; trainSize = int32(length(data) * trainRatio); trainData = data(1:trainSize,:); testData = data(trainSize+1:end,:); % 提取特征和标签 trainFeatures = trainData(:,1:end-1); trainLabels = trainData(:,end); testFeatures = testData(:,1:end-1); testLabels = testData(:,end); % 创建SVM模型 svmModel = fitcsvm(trainFeatures, trainLabels); % 在测试集上进行预测 predictedLabels = predict(svmModel, testFeatures); % 计算准确率 accuracy = sum(predictedLabels == testLabels) / length(testLabels); disp(['准确率:' num2str(accuracy*100) '%']); ``` 以上代码中,我们首先导入情感数据集,然后将数据划分为训练集和测试集。接着我们提取特征和标签,即将文本数据转化为特征向量表示。 然后我们使用fitcsvm函数来创建SVM模型,并通过predict函数在测试集上进行预测。最后我们计算准确率来评估模型的性能。 这是一个简单的情感识别系统的实现示例,实际情感识别会有更多的特征提取方法和模型调参等工作。希望这个回答能对你有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值