【创新未发表】Matlab实现秃鹰优化算法BES-Kmean-Transformer-BiLSTM组合状态识别算法研究

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

近年来,状态识别算法在工业生产、医疗诊断、金融预测等领域得到了广泛应用。然而,现有的状态识别算法在处理复杂、非线性、高维数据时存在着识别精度低、泛化能力差等问题。为了克服上述问题,本文提出了一种基于秃鹰优化算法 (BES)、K-means 聚类、Transformer 和双向长短期记忆网络 (BiLSTM) 的组合状态识别算法,并利用 Matlab 进行了算法实现和验证。该算法首先利用 BES 算法对原始数据进行特征提取和降维,然后利用 K-means 聚类算法对特征进行分类,并将分类后的特征输入 Transformer 模型进行特征融合和非线性特征提取,最后将 Transformer 的输出作为 BiLSTM 的输入进行状态识别。实验结果表明,该算法在识别精度和泛化能力方面均优于传统的 BP 神经网络、SVM 和 LSTM 等算法,有效地提高了状态识别算法的性能。

关键词:状态识别算法;秃鹰优化算法;K-means 聚类;Transformer;BiLSTM;Matlab

1. 引言

状态识别算法是近年来机器学习领域的研究热点之一,其主要目标是根据系统运行状态的实时数据,识别系统的当前状态,并预测未来可能出现的状态。状态识别算法在工业生产、医疗诊断、金融预测等领域有着广泛的应用。例如,在工业生产中,可以利用状态识别算法对设备进行故障诊断和预测性维护;在医疗诊断中,可以利用状态识别算法对患者的病情进行诊断和预警;在金融预测中,可以利用状态识别算法对市场趋势进行分析和预测。

现有的状态识别算法主要包括以下几种:

  • 基于神经网络的算法: 常见的包括 BP 神经网络、RBF 神经网络、LSTM 等。这些算法能够学习复杂的数据模式,并具有较好的泛化能力。但其训练过程复杂,容易陷入局部最优解,且对数据噪声敏感。

  • 基于支持向量机的算法: SVM 是一种常用的分类算法,其能够有效地处理高维数据,并具有较好的泛化能力。但其对数据噪声敏感,且训练速度较慢。

  • 基于统计模型的算法: 常见的包括隐马尔可夫模型 (HMM)、条件随机场 (CRF) 等。这些算法能够对时间序列数据进行建模,并具有较好的状态识别精度。但其对模型参数的设置要求较高,且对数据分布的假设较为严格。

尽管现有的状态识别算法取得了一定进展,但其在处理复杂、非线性、高维数据时仍存在着一些不足。例如,在处理复杂工业过程数据时,传统算法难以提取有效特征,识别精度较低;在处理医疗数据时,传统算法难以有效地识别疾病的早期症状,导致诊断效果不佳;在处理金融数据时,传统算法难以捕捉市场变化的趋势,预测精度较低。

为了克服上述问题,本文提出了一种基于秃鹰优化算法 (BES)、K-means 聚类、Transformer 和双向长短期记忆网络 (BiLSTM) 的组合状态识别算法。该算法结合了多种算法的优势,有效地提高了状态识别算法的性能。

2. 算法原理

本文提出的组合状态识别算法主要包括以下四个模块:

  • 秃鹰优化算法 (BES): BES 是一种新型的元启发式优化算法,灵感来源于秃鹫的觅食行为。该算法具有较强的全局搜索能力和局部寻优能力,能够有效地处理高维、非线性问题,并可以用于特征提取和降维。

  • K-means 聚类: K-means 是一种常用的无监督学习算法,能够将数据样本划分为多个簇,并将同一簇内的样本视为具有相似特征。该算法可以用于对特征进行分类,并提高状态识别算法的效率。

  • Transformer: Transformer 是一种基于注意力机制的深度学习模型,能够有效地提取数据中的长程依赖关系,并进行特征融合。该算法能够有效地处理序列数据,并提高状态识别算法的精度。

  • 双向长短期记忆网络 (BiLSTM): BiLSTM 是一种特殊的递归神经网络,能够同时处理序列数据的正向和反向信息,并具有较好的时间序列数据建模能力。该算法能够有效地识别时间序列数据中的状态变化,并提高状态识别算法的准确率。

2.1 秃鹰优化算法 (BES)

BES 算法是一种新型的元启发式优化算法,灵感来源于秃鹫的觅食行为。该算法主要包括以下几个步骤:

  1. 初始化种群: 随机生成一个初始种群,每个个体代表一个可能的解。

  2. 评估个体适应度: 对于每个个体,计算其适应度值,适应度值越高,个体越好。

  3. 更新个体位置: 根据个体的适应度值,更新每个个体的位
    置,使得适应度值更高的个体向更优解的方向移动。

  4. 重复步骤 2 和 3,直到满足停止条件: 例如,达到最大迭代次数或适应度值达到预设阈值。

BES 算法的主要特点是:

  • 全局搜索能力强: BES 算法利用随机搜索和全局搜索相结合的方式,能够在整个搜索空间内进行探索,找到全局最优解的可能性更高。

  • 局部寻优能力强: BES 算法利用局部搜索的方式,能够在找到一个较优解后,进一步优化该解,提高解的质量。

  • 参数少,易于实现: BES 算法的参数较少,易于实现,且收敛速度较快。

2.2 K-means 聚类

K-means 是一种常用的无监督学习算法,能够将数据样本划分为多个簇,并将同一簇内的样本视为具有相似特征。该算法主要包括以下几个步骤:

  1. 初始化聚类中心: 随机选择 K 个样本作为聚类中心。

  2. 计算样本到聚类中心的距离: 计算每个样本到所有聚类中心的距离。

  3. 将样本分配到最近的聚类中心: 将每个样本分配到距离其最近的聚类中心所在的簇。

  4. 更新聚类中心: 更新每个簇的聚类中心,使其为该簇内所有样本的均值。

  5. 重复步骤 2 和 3,直到聚类中心不再变化: 即聚类结果不再发生变化。

K-means 算法的主要特点是:

  • 简单易懂: K-means 算法的原理简单易懂,易于理解和实现。

  • 计算效率高: K-means 算法的计算效率较高,能够快速地完成聚类任务。

  • 适用于大规模数据集: K-means 算法适用于大规模数据集,能够有效地对海量数据进行聚类分析。

2.3 Transformer

Transformer 是一种基于注意力机制的深度学习模型,能够有效地提取数据中的长程依赖关系,并进行特征融合。该算法主要包括以下几个部分:

  • 编码器: 编码器负责将输入数据编码为特征向量。编码器包含多个编码层,每个编码层包含多头注意力机制和前馈神经网络。

  • 解码器: 解码器负责根据编码器生成的特征向量解码输出数据。解码器包含多个解码层,每个解码层包含多头注意力机制、前馈神经网络和掩码机制。

  • 多头注意力机制: 多头注意力机制能够从多个角度对数据进行关注,提取更丰富的特征信息。

  • 前馈神经网络: 前馈神经网络能够对特征向量进行非线性变换,提取更抽象的特征信息。

Transformer 算法的主要特点是:

  • 能够有效地提取长程依赖关系: Transformer 算法能够有效地提取数据中的长程依赖关系,克服了传统 RNN 模型难以处理长序列数据的缺点。

  • 能够进行特征融合: Transformer 算法能够将多个特征向量进行融合,提取更完整的特征信息。

  • 并行计算效率高: Transformer 算法能够进行并行计算,提高训练速度。

2.4 双向长短期记忆网络 (BiLSTM)

BiLSTM 是一种特殊的递归神经网络,能够同时处理序列数据的正向和反向信息,并具有较好的时间序列数据建模能力。该算法主要包括以下几个部分:

  • 正向 LSTM: 正向 LSTM 能够处理序列数据的正向信息。

  • 反向 LSTM: 反向 LSTM 能够处理序列数据的反向信息。

  • 合并层: 合并层将正向 LSTM 和反向 LSTM 的输出进行合并,得到最终的输出结果。

BiLSTM 算法的主要特点是:

  • 能够同时处理序列数据的正向和反向信息: BiLSTM 算法能够同时处理序列数据的正向和反向信息,有效地捕捉时间序列数据中的状态变化。

  • 能够建模时间序列数据的长期依赖关系: BiLSTM 算法能够建模时间序列数据的长期依赖关系,提高状态识别算法的精度。

  • 适用于处理时间序列数据: BiLSTM 算法适用于处理时间序列数据,能够有效地识别时间序列数据中的状态变化。

3. 算法流程

本文提出的组合状态识别算法的流程如下:

  1. 数据预处理: 对原始数据进行预处理,包括数据清洗、数据标准化、数据降维等操作。

  2. 特征提取: 利用 BES 算法对预处理后的数据进行特征提取和降维,得到一组低维特征向量。

  3. 特征分类: 利用 K-means 聚类算法对特征向量进行分类,将不同类型的特征向量划分为不同的簇。

  4. 特征融合: 将分类后的特征向量输入 Transformer 模型进行特征融合和非线性特征提取,得到一组更具代表性的特征向量。

  5. 状态识别: 将 Transformer 的输出作为 BiLSTM 的输入进行状态识别,最终输出系统状态的识别结果。

4. 实验结果与分析

为了验证本文提出的组合状态识别算法的有效性,我们将该算法与传统的 BP 神经网络、SVM 和 LSTM 等算法进行了比较。实验数据来自于一个真实的工业生产过程,该数据包含了设备的运行状态信息,例如温度、压力、振动等。我们将数据分为训练集和测试集,分别用于算法训练和性能评估。

4.1 实验环境

实验环境如下:

  • 操作系统: Windows 10

  • 软件版本: Matlab R2020a

  • 硬件配置: Intel Core i7-8700K CPU,16 GB RAM

4.2 评价指标

实验中使用的评价指标包括:

  • 准确率 (Accuracy): 正确识别出的样本数量占总样本数量的比例。

  • 精确率 (Precision): 正确识别为正样本的样本数量占所有识别为正样本的样本数量的比例。

  • 召回率 (Recall): 正确识别为正样本的样本数量占所有实际为正样本的样本数量的比例。

  • F1-score: 精确率和召回率的调和平均值。

4.4 实验分析

从表 1 可以看出,本文提出的组合状态识别算法的准确率、精确率、召回率和 F1-score 均高于其他算法,说明该算法能够有效地识别复杂、非线性、高维数据,并具有较好的泛化能力。

5. 总结

本文提出了一种基于 BES、K-means 聚类、Transformer 和 BiLSTM 的组合状态识别算法,并利用 Matlab 进行了算法实现和验证。该算法结合了多种算法的优势,有效地提高了状态识别算法的性能。实验结果表明,该算法在识别精度和泛化能力方面均优于传统的 BP 神经网络、SVM 和 LSTM 等算法。

⛳️ 运行结果

🔗 参考文献

[1] 钟来民,陆卫忠,傅启明,等.基于Transformer-BiLSTM特征融合的DNA结合蛋白预测方法[J].微电子学与计算机, 2023, 40(12):1-9.

[2]  Yan Y , Liu F , Zhuang X ,et al.An R-Transformer_BiLSTM Model Based on Attention for Multi-label Text Classification[J].Neural Processing Letters, 2022, 55:1293 - 1316.DOI:10.1007/s11063-022-10938-y.

[3] 李韧,李童,杨建喜,等.基于Transformer-BiLSTM-CRF的桥梁检测领域命名实体识别[J].中文信息学报, 2021.DOI:10.3969/j.issn.1003-0077.2021.04.012.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值