回归预测 | MATLAB实现GPR高斯过程回归多输入单输出回归预测(多指标评价)

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

高斯过程回归 (Gaussian Process Regression, GPR) 作为一种非参数贝叶斯方法,在处理多输入单输出 (Multiple Input Single Output, MISO) 回归预测问题中展现出显著优势。它不仅能够提供预测值,还能给出相应的置信区间,体现了模型的不确定性,这在许多实际应用中至关重要。然而,由于GPR模型的复杂性和多指标评价体系的应用,对GPR模型在MISO回归预测中的性能评估需要更加系统和全面的考量。本文将深入探讨GPR在MISO回归预测中的应用,并着重分析其多指标评价体系。

一、GPR模型的基本原理

GPR模型的核心思想是将目标函数视为一个高斯过程,该过程由均值函数和协方差函数定义。均值函数通常假设为零,而协方差函数的选择则至关重要,它决定了模型的平滑性和泛化能力。常用的协方差函数包括平方指数核函数 (Squared Exponential kernel)、马特恩核函数 (Matérn kernel) 等。通过观测数据,GPR模型可以学习出最优的协方差函数参数,从而对新的输入进行预测。预测过程涉及到条件概率的计算,最终得到预测值及其方差,后者反映了预测的不确定性。

在MISO回归预测中,输入向量包含多个特征,GPR模型需要有效地处理这些特征之间的关联性。特征选择或降维技术可以提高模型效率并避免维度灾难。此外,对输入特征进行标准化或归一化处理也能够改善模型的性能。

二、多指标评价体系的构建

单一指标难以全面地评价回归模型的性能,因此采用多指标评价体系至关重要。针对GPR在MISO回归预测中的应用,我们应选择能够反映不同方面性能的指标,例如:

  • 均方误差 (Mean Squared Error, MSE): 衡量预测值与真实值之间差异的平方和的平均值。MSE值越小,模型预测精度越高。

  • 均方根误差 (Root Mean Squared Error, RMSE): MSE的平方根,具有与被预测变量相同的单位,更直观地反映预测误差的大小。

  • 平均绝对误差 (Mean Absolute Error, MAE): 衡量预测值与真实值之间绝对差值的平均值,对异常值不太敏感。

  • R方 (R-squared): 表示模型解释数据的比例,取值范围为[0, 1],值越大说明模型拟合效果越好。 需要注意的是,R方值并非总是越高越好,尤其在数据量较少或存在过拟合的情况下。

  • 预测区间覆盖率 (Prediction Interval Coverage Probability, PICP): 衡量预测区间覆盖真实值的比例。理想情况下,PICP应接近预设的置信水平,例如95%。

  • 预测区间宽度 (Prediction Interval Width, PIW): 衡量预测区间的大小。 PIW越小,模型预测的不确定性越低,但过小的PIW可能导致覆盖率下降。

三、GPR模型参数调优与模型选择

GPR模型的性能很大程度上取决于协方差函数的选择和参数调优。常用的参数调优方法包括交叉验证 (Cross-Validation) 和贝叶斯优化 (Bayesian Optimization) 等。交叉验证可以评估模型在不同数据集上的泛化能力,而贝叶斯优化则可以更高效地搜索最优参数组合。

此外,需要根据具体应用场景选择合适的协方差函数。不同的协方差函数具有不同的平滑性和泛化能力,选择合适的协方差函数对于获得最佳预测性能至关重要。

四、案例分析与讨论

为了验证GPR模型在MISO回归预测中的有效性,可以选取实际应用中的数据集进行案例分析。在分析过程中,需要详细记录模型参数设置、训练过程以及多指标评价结果。通过比较不同GPR模型的性能,可以深入理解不同协方差函数和参数设置对模型预测精度的影响。

此外,还需要对GPR模型的计算复杂度进行分析,特别是在处理大规模数据集时,GPR模型的计算量会急剧增加。因此,研究高效的算法和技术来提高GPR模型的计算效率至关重要。

五、结论与展望

本文详细阐述了GPR在MISO回归预测中的应用,并构建了一个多指标评价体系来评估模型性能。通过对MSE、RMSE、MAE、R方、PICP和PIW等指标的综合考量,可以更全面地评价GPR模型的预测能力。未来的研究方向可以关注以下几个方面:

  • 开发更加高效的GPR算法,以应对大规模数据集的挑战。

  • 研究新的协方差函数,以提高模型的表达能力和泛化能力。

  • 将GPR模型与其他机器学习方法结合,例如深度学习模型,以进一步提高预测精度。

  • 探索GPR模型在不同应用领域中的应用,例如气象预测、金融预测等。

总之,GPR作为一种强大的非参数回归方法,在MISO回归预测中具有广阔的应用前景。通过合理的模型选择、参数调优和多指标评价体系的构建,可以充分发挥GPR模型的优势,并为实际应用提供可靠的预测结果。 然而,需要持续研究和改进,以克服其在计算效率和模型解释性等方面的局限性。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值