【雷达】基于FMCW雷达探测的实时运动学的全球人类行走模型附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

1. 模型背景与意义

  • FMCW 雷达凭借其高精度、高分辨率、抗干扰能力强以及能适应复杂环境等优势,在人体运动监测领域应用广泛1。构建基于 FMCW 雷达探测的实时运动学全球人类行走模型,旨在通过 FMCW 雷达获取人类行走的实时运动学数据,如位置、速度、加速度等,进而建立起能描述全球范围内人类行走特征的通用模型。这对于智能安防、智能交通、医疗康复、运动分析等众多领域的发展具有重要意义。

2. 模型构建基础

  • FMCW 雷达工作原理1

    :FMCW 雷达发射连续的频率调制信号,经目标反射后接收回波信号,依据信号的频率变化计算目标物体的距离、速度等信息。在监测人类行走时,雷达可实时获取行人的位置变化等数据。

  • 人体行走运动学特性

    :人类行走具有一定的周期性和规律性,包括步长、步频、速度变化等特征。这些特性在不同个体间虽存在差异,但也有一定的统计规律可循,是构建全球人类行走模型的重要依据。

3. 模型建立过程

  • 数据采集

    :利用 FMCW 雷达在多种场景下,如室内、室外、不同地形等,对大量不同年龄、性别、种族的人群进行行走数据采集。采集的数据应涵盖行人的三维位置信息、速度信息以及时间序列等。

  • 特征提取

    :从采集到的原始数据中提取与人类行走相关的特征参数,如平均步长、步频、行走速度的变化规律、加速度的峰值和谷值等。这些特征参数是描述人类行走行为的关键指标。

  • 模型参数估计

    :基于提取的特征参数,运用统计学方法和机器学习算法,对全球人类行走模型的参数进行估计和优化。例如,可以采用聚类分析方法将不同人群的行走特征进行分类,再针对每一类建立相应的子模型;或者使用神经网络算法对大量数据进行学习,自动提取特征并建立模型。

  • 模型验证与优化

    :通过将模型预测结果与实际采集的数据进行对比验证,评估模型的准确性和可靠性。若模型存在偏差,则分析原因并对模型进行优化调整,如调整模型参数、增加特征维度或改进算法等,以提高模型的性能。

4. 模型应用领域

  • 智能安防

    :可用于实时监测人员的行走行为,通过与预设的正常行走模式对比,及时发现异常行为,如徘徊、奔跑、摔倒等,从而实现智能安防预警和监控。

  • 智能交通

    :在交通场景中,能够监测行人的行走轨迹和速度,为交通流量分析、行人导航以及智能交通信号控制等提供数据支持,有助于优化交通管理和提高道路安全性。

  • 医疗康复

    :医生可借助该模型评估患者的行走功能恢复情况,为康复训练方案的制定和调整提供科学依据,同时也可用于长期的健康监测,及时发现潜在的健康问题。

  • 运动分析

    :对于运动员或运动爱好者,该模型可分析其行走或跑步的姿态和运动学参数,帮助教练和运动员改进训练方法,提高运动表现,减少运动损伤风险。

5. 挑战与展望

  • 挑战

    :不同地区、文化和个体之间的行走习惯和生理特征存在差异,如何在模型中充分考虑这些因素以提高模型的通用性是一大挑战;此外,复杂环境因素如多目标干扰、信号遮挡、电磁干扰等也会影响 FMCW 雷达数据的准确性和可靠性,进而影响模型的精度。

  • 展望

    :随着 FMCW 雷达技术的不断发展和数据采集规模的扩大,以及机器学习和数据分析技术的日益成熟,基于 FMCW 雷达探测的实时运动学全球人类行走模型将不断完善和优化,其应用领域也将进一步拓展,为人类社会的智能化发展提供更有力的支持

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值