【SOC估计】基于模糊控制和扩展卡尔曼滤波器的锂离子电池SOC估计Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

本组研究以动力电池为研究对象,采用动态应力工况(Dynamic stress test,

DST)下的仿真实验数据,模拟了较长时间的电池高频数充放电过程,得到一组荷

电状态 SOC、充放电电流 I、端口电压 U、电池温度 T 等数据。

方法选择

卡尔曼滤波法是 SOC 估计中目前较为常用的方法,有大量文献针对卡尔曼

滤波法进行改进,卡尔曼滤波算法在估算电池的荷电状态 SOC 时,将 SOC 看作

是电池系统的一个内部状态变量,通过递推算法实现 SOC 的最小方差估算。在

算法的实现过程中能保持很好的精度,并且对初始值的误差有很强的修正作用,

对噪声也有很强的抑制作用。

但由于电池的模型是非线性的,不能直接采用卡尔曼滤波法算法估算SOC,

因此常见的方法是采用扩展卡尔曼滤波算法来估算 SOC。扩展卡尔曼滤波算法

实在卡尔曼滤波算法的滤波方程推导过程中增加了线性化步骤:在状态估计时,

对系统方程在前一状态的估计值处做实时的线性泰勒近似;在预测,对测量方程

在相应的预测位置也进行线性泰勒相似。

此外,本组充分考虑温度及充放电倍率对算法的影响,设置复合性卡尔曼增

益修正系数,基于模糊控制理论对扩展滤波中的观测矩阵进行时间更新值与测量

修正值的修正,保证了算法 SOC 估计的精度。下面将简要介绍一下方法原理及用法。

 Kalman 滤波

卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输

入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中

的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman 滤波在测

量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态。

对于 Kalman Filter 的运用,只需要掌握“黄金五条”公式,且通过“预测”与“更

新”两个过程来对系统的状态进行最优估计即可。公式如下:

扩展 Kalman 滤波

扩展卡尔曼滤波(Extended Kalman Filter,EKF)是标准卡尔曼滤波在非线

性情形下的一种扩展形式,EKF 算法是将非线性函数进行泰勒展开,省略高阶

项,保留展开项的一阶项,以此来实现非线性函数线性化,最后通过卡尔曼滤波

算法近似计算系统的状态估计值和方差估计值,对信号进行滤波。

具体的计算公式和卡尔曼滤波的“黄金五条”公式类似,如下所示。

模糊控制

模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能

控制方法,它是从行为上模仿人的模糊推理和决策过程的一种智能控制方法。该

方法首先将操作人员或专家经验编成模糊规则,然后将来自传感器的实时信号模

糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的

输出量。

📣 部分代码

            X(i_temp,k) = X_Max(k);

        end

        if X(i_temp,k) < X_Min(k)

            X(i_temp,k) = X_Min(k);

        end

        

        end

    end

    for i_temp = 1:length(V(:, 1))

        for k=1:6

        if V(i_temp,k) > V_Max(k)

            V(i_temp,k) = V_Max(k);

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值