✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. 原理
激光雷达传感器能够精确测量目标物体的距离信息,为 SLAM 系统提供丰富的环境数据。角点作为环境中的特征点,具有良好的稳定性和可识别性。EKF SLAM 利用扩展卡尔曼滤波器对激光雷达数据中的角点进行处理,通过预测和更新步骤,实现对机器人位置和环境地图的估计与更新。
2. 具体步骤
- 数据采集
:激光雷达以一定频率扫描环境,获取距离信息,同时提取扫描数据中的角点。角点提取算法(如 Harris 角点检测、Shi-Tomasi 角点检测等)用于识别环境中的角点位置。
- 状态估计
:系统状态包含机器人的位置(如 x,y 坐标和航向角 θ)以及环境地图中的角点位置。扩展卡尔曼滤波器通过状态转移模型预测下一时刻的系统状态。状态转移模型考虑机器人的运动学特性,如机器人的速度和角速度等参数。
- 测量更新
:将激光雷达测量的角点位置与预测的角点位置进行比较,通过测量模型计算测量残差。测量模型考虑激光雷达的测量误差和角点的不确定性。根据测量残差和协方差矩阵,更新系统状态和协方差矩阵。协方差矩阵反映系统状态的不确定性,在更新过程中,协方差矩阵会随着测量数据的加入而不断调整。
- 地图构建
:基于更新后的系统状态,构建和更新环境地图。地图中的角点位置和机器人的轨迹都在不断更新,以反映环境的真实情况。
3. 优势
- 精度较高
:激光雷达的高精度距离测量和角点的稳定性相结合,能够为系统提供准确的环境信息,从而提高定位和地图构建的精度。
- 实时性较好
:扩展卡尔曼滤波器的快速计算能力使得系统能够实时处理激光雷达数据,适应动态变化的环境。
4. 面临的挑战
- 计算资源需求
:由于需要处理大量的激光雷达数据和进行复杂的滤波计算,对计算资源(如处理器性能和内存)的要求较高。
- 数据关联问题
:在多角点环境中,准确地将激光雷达测量的角点与地图中的角点进行关联是一个难题。错误的数据关联会导致定位和地图构建的误差。
- 环境适应性
:在一些特殊环境(如低反射率环境或复杂地形环境)中,激光雷达的测量性能会受到影响,进而影响 EKF SLAM 系统的性能。
结合激光雷达传感器和角点提取的 EKF SLAM 为 SLAM 问题提供了一种有效的解决方案,但在实际应用中,还需要进一步优化算法和硬件,以提高系统的性能和适应性。
⛳️ 运行结果
🔗 参考文献
[1] 林辉.基于车载多激光雷达的地图构建与障碍物检测[D].浙江大学,2017.DOI:CNKI:CDMD:2.1017.242102.
[2] 卢纪凤.基于激光雷达的移动机器人SLAM工程化应用研究[D].上海交通大学,2020.
[3] 赖秋玲.基于RGB-D与激光雷达传感器的SLAM算法研究与实现[D].东华大学,2018.
📣 部分代码
if(n==1)
%disp('Control with Noise')
deltaTh = (deltaS(1) - deltaS(2))/B +q(3);
deltaX = (deltaS(1) + deltaS(2))/2 * cos(x(3) +deltaTh/2) +q(2);
deltaY = (deltaS(1) + deltaS(2))/2 * sin(x(3) +deltaTh/2) +q(2);
else
%disp('Control without Noise')
deltaTh =( (deltaS(1) - deltaS(2)))/B;
deltaX = ((deltaS(1) + deltaS(2))/2 * cos(x(3) +deltaTh/2));
deltaY = ((deltaS(1) + deltaS(2))/2 * sin(x(3) +deltaTh/2));
end
% agregate
u =[deltaX, deltaY, deltaTh]';
end
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇