跟网型逆变器小干扰稳定性分析与控制策略优化研究附Simulink仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着新能源发电渗透率的不断提升,跟网型逆变器在电力系统中的应用愈发广泛。然而,其在运行过程中面临小干扰稳定性问题,影响系统的可靠运行。本文深入剖析了跟网型逆变器的小干扰稳定性,通过构建数学模型,采用状态空间法与频域分析法进行稳定性评估。在此基础上,提出基于阻抗重塑与双锁相环技术的控制策略优化方案,并借助 Simulink 仿真验证其有效性。研究结果表明,优化后的控制策略显著增强了跟网型逆变器的小干扰稳定性,为电力系统的稳定运行提供了有力支撑 。

关键词

跟网型逆变器;小干扰稳定性;控制策略优化;阻抗重塑;双锁相环

一、引言

1.1 研究背景

在全球能源转型的大背景下,以风电、光伏为代表的可再生能源发电规模持续扩大 。跟网型逆变器作为可再生能源并网的关键设备,通过将直流电转换为交流电并接入电网,实现了清洁能源的高效利用 。然而,随着电网中可再生能源占比的增加,电网结构逐渐呈现弱电网特性,如高阻抗、低短路比等 。在这种情况下,跟网型逆变器易受到各类小干扰的影响,出现不稳定现象,甚至引发系统振荡,严重威胁电力系统的安全稳定运行 。因此,深入研究跟网型逆变器的小干扰稳定性并优化其控制策略具有重要的现实意义 。

1.2 研究现状

国内外学者针对跟网型逆变器的稳定性问题开展了大量研究 。早期研究主要集中在建立逆变器的数学模型,通过线性化方法分析其小干扰稳定性 。例如,文献 [X] 利用状态空间平均法建立了逆变器的小信号模型,并通过特征值分析判断系统的稳定性 。随着研究的深入,一些先进的控制策略被提出以改善逆变器的稳定性 。文献 [X] 提出了一种基于自适应控制的方法,能够根据电网参数的变化实时调整逆变器的控制参数,提高了系统的鲁棒性 。近年来,随着智能算法的发展,如粒子群优化算法、遗传算法等,也被应用于逆变器控制策略的优化中,取得了一定的成果 。然而,目前的研究仍存在一些不足,如对复杂电网环境下逆变器稳定性的研究还不够深入,控制策略的优化效果有待进一步提升等 。

1.3 研究目的与意义

本研究旨在深入分析跟网型逆变器的小干扰稳定性,揭示其在弱电网环境下的不稳定机理 。通过优化控制策略,提高逆变器在小干扰下的稳定性和鲁棒性,确保电力系统的可靠运行 。具体而言,通过建立精确的数学模型,采用先进的分析方法评估逆变器的稳定性;提出创新性的控制策略优化方案,并通过仿真和实验验证其有效性 。本研究成果将为跟网型逆变器的设计、运行和控制提供理论支持和技术指导,有助于推动可再生能源在电力系统中的大规模应用 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值