应用邻域 应用举例 应用层面(节点,连接,子图,全图) 概念区别 图神经网络本质上解决了表示学习的问题 可以把神经网络看作一个黑箱,图中的f函数 困难与挑战 现代的深度学习,如何把图输入到神经网络中 数学表示 图的矩阵表示 能否直接将邻接矩阵输入神经网络中? 能否参考已有的神经网络结构? 消息传递 学习路径 书籍推荐 目录即学习路径