图神经网络综述和学习路径

本文探讨了图神经网络在应用中的角色,包括节点、连接和子图等概念的区别。它解决了表示学习问题,但面临如何将图数据适配到现代深度学习模型的挑战。文章还涉及数学表示,如邻接矩阵的使用,以及是否可以直接借鉴传统神经网络结构。最后,提供了学习路径和相关书籍推荐作为深入研究的指引。
摘要由CSDN通过智能技术生成

应用邻域

应用举例

应用层面(节点,连接,子图,全图)

概念区别

图神经网络本质上解决了表示学习的问题

可以把神经网络看作一个黑箱,图中的f函数

困难与挑战

现代的深度学习,如何把图输入到神经网络中

数学表示

图的矩阵表示

能否直接将邻接矩阵输入神经网络中?

能否参考已有的神经网络结构?

消息传递

学习路径

书籍推荐

目录即学习路径

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值