大模型落地的实战解析:在Python中使用LangChain组合多种信息检索器的高级技巧

133 篇文章

已下架不支持订阅

大模型落地的实战解析:在Python中使用LangChain组合多种信息检索器的高级技巧


随着大语言模型(LLM)在自然语言处理领域的广泛应用,信息检索的重要性愈发凸显。在现实世界中,用户的查询往往涉及到复杂的语义和多样的关键词匹配,单一的检索方法难以全面覆盖所有相关信息。因此,组合多种信息检索器,发挥它们各自的优势,成为提升信息检索系统精度的关键方法。在本文中,我们将深入探讨如何在Python中使用LangChain框架,结合多种信息检索器(如BM25和FAISS)来实现更为精确的混合检索,并通过详细的代码实例演示如何在实际应用中部署这一技术。

一、信息检索器的基本概念

1.1 什么是信息检索器?

信息检索器(Retriever)是用于从大规模文档库中提取与用户查询相关内容的组件。它在各种基于自然语言处理的应用中起着至关重要的作用,例如搜索引擎、智能问答系统和内容推荐系统。

信息检索器的工作方式多种多样,常见的包括稀疏检索和密集检索:

  • 稀疏检索:如BM25算法,基于关键词匹配,适用于寻找具体的词汇或短语。
  • 密集检索:如基于嵌入向量的检索(FAISS),基于语义相似度,适用于理解查询的整体语义并返回相关文档。

1.2 为什么需要组合检索器?

单一类型的检索器在处理复杂查询时往往存在局限性。稀疏检索能够准确匹配关键词,但在语义扩展性上有所欠缺

已下架不支持订阅

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_57781768

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值