LINS论文翻译(一种轻量级激光雷达惯性状态估计器)

论文原文链接1907.02233.pdf (arxiv.org)

学习自用,随意机翻用以阅读

摘要 — 我们提出了LINS,一种轻量级激光雷达惯性状态估计器,用于实时自我运动估计。提议的方法可实现稳健高效的地面导航

具有挑战性环境中的车辆,例如无特征的场景,通过在紧密耦合中融合 6 轴 IMU 和 3D 激光雷达方案。迭代误差状态卡尔曼滤波器 (ESKF) 旨在通过生成每次迭代中的新功能对应关系,并保持系统在计算上易于处理。此外,我们使用以机器人为中心的公式,表示移动中的状态本地框架,以防止长期过滤器发散。

为了验证鲁棒性和泛化性,在各种场景中进行了广泛的实验。实验结果表明 LINS 提供的性能与在稳定性和稳定性方面最先进的激光雷达惯性里程计精度和速度的提高数量级。

一、引言

自我运动估计是支持大多数移动机器人应用程序 — 实时性差

算法的能力和失败可以迅速导致损坏硬件及其周围环境。对此末端,主动传感器,如激光雷达,被提议实现这项任务被广泛称为同步本地化和映射 (SLAM)。的一些主要优势

典型的 3D 激光雷达包括 (i) 宽水平视场(视场)[1] 和 (ii) 对环境照明条件的不变性[2]. 然而,基于激光雷达的导航系统很敏感到周围环境。此外,运动失真 [3] 和点云的稀疏性质[4]使它在某些方面变得更糟具有挑战性的场景(例如,宽阔而开放的区域)。

最近的研究表明,缺乏独立激光雷达可以通过融合 IMU 进行补偿。一与激光雷达不同,IMU对周围环境不敏感。它提供精确的短期运动约束和一般工作在高频下(例如,100 Hz-500 Hz)。这些功能可以帮助激光雷达导航系统从中恢复点云高动态运动失真,从而提高精度。然而,最先进的激光雷达惯性里程计(LIO)[5] 哪个基于图优化不能直接

由于高计算性,应用于实时导航费用;对于单次扫描,需要 100 毫秒以上

计算激光雷达惯性里程计甚至更多时间以维护地图。

在本文中,我们提出了LINS,一种用于无人驾驶地面车辆(UGV)实时导航的轻量级激光惯性状态估计器。迭代误差状态卡尔曼滤波器 (ESKF) 旨在确保准确性和效率。为了实现长期稳定性,我们引入了以机器人为中心的局部框架状态的表述参考值在每个激光雷达时间步长偏移,并且两个连续局部帧之间的相对姿态估计用于更新全局姿势估计值。主要

我们的工作贡献如下:

• 一种紧密耦合的激光雷达-惯性里程计算法,这比我们之前的工作[5]快了一个订单

的量级,被提议。

• 我们提出了一个以机器人为中心的迭代 ESKF,它是在各种具有挑战性的场景中表现出色,并表现出卓越的表现性能超过最先进的技术。

• 源代码可在线获取1.尽最大努力

我们的知识,LINS是第一个紧密耦合的LIO通过迭代卡尔曼解决 6 自由度自我运动滤波。

其余文件组织如下。在章节中。二、讨论相关文献。我们给出一个概述

第三节中的完整系统管道。实验性结果在第四节中说明,然后是结论

在第三节。V.

二、相关工作

关于激光雷达相关测程法的作品有数百部在文献中。我们将注意力限制在相关工作上

关于6个自由度自我运动估计器和相关融合算法,分为松散耦合算法和紧密结合的人。

A. 仅激光雷达方法

许多仅激光雷达方法是众所周知的迭代最近点(ICP)扫描匹配方法的变体

它基于扫描到扫描注册。[6], [7] 有调查了ICP的有效变体。对于实时应用,

[8] 建立LOAM,按顺序登记提取的LOAM边和平面要素到增量构建的全局要素

地图。[9] 提议的乐高改编原始LOAM。到 UGV 应用程序。通过应用地平面提取

和点云分割,乐高过滤掉了不可靠的特征,并在覆盖的区域表现出极大的稳定性

嘈杂的物体,即草和树。[10]提供了有效的闭环机制,可实现大规模映射实时。

B. 松耦合激光雷达-IMU 融合

松散耦合方法分别处理两个传感器推断它们稍后融合的运动约束(例如,

[11], [12]).IMU辅助的LOAM [8]采取了方向和由 IMU 计算的平移作为优化的先验。

[13] 将 IMU 测量值与姿势估计值相结合从基于激光雷达的高斯粒子滤波器和

预建地图。一般来说,松散耦合融合在计算上是有效的[14],但激光雷达和惯性的解耦

约束导致信息丢失[15]。

C. 紧密耦合激光雷达-IMU融合

紧密耦合的方法通过联合优化直接融合激光雷达和惯性测量,这可以

分为基于优化的[16]、[17]和扩展

基于卡尔曼滤波(EKF)[18],[15]。[19] 通过最小化约束来执行局部轨迹优化

IMU 和激光雷达在一起。[20]提出了LIPS

利用惯性预积分的图优化

来自激光雷达的约束 [21] 和平面约束。[5] 建立了 LIO 映射(为简洁起见,在下文中称为 LIOM),它也基于图优化,但

一种新颖的旋转约束映射优化方法

最后的姿势和地图。但是,约束构造

并且本地地图窗口中的批量优化对于实时应用来说太耗时了。[22]引入了基于2D激光雷达的激光雷达惯性EKF。但它的应用

场景仅限于室内环境,因为它

要求所有周围的平面都处于正交状态

结构。

众所周知,EKF容易受到线性化的影响可能导致性能不佳甚至导致的错误

到背离[23],[24]。这个缺点变得突出当它涉及激光雷达观察到的扫描到扫描约束时,

如果初始姿势是不正确,导致错误的要素匹配结果。自

消除错误匹配引起的错误,我们提出了一个迭代的卡尔曼滤波[26],可以重复找到

每次迭代中更好的匹配。此外,我们采用了误差状态表示,保证线性化有效性

  1. 这一特点使我们的方法与迭代扩展卡尔曼滤波器 [25]。

三、激光雷达惯性测程与测绘

A. 系统概述

考虑配备IMU和3D的UGV激光 雷达。我们的目标是估计其 6 自由度自我运动和

同时建立全球地图,如图 1 所示。一系统框架的概述如图 2 所示。这

整个系统由三个主要模块组成:特征提取、LIO 和映射。(一) 特征提取模块

旨在从原始点云中提取稳定的特征。(二)LIO 模块,由传播和更新组成

子模块,执行迭代卡尔曼滤波和输出初始测程法以及未变形的特征。(三)

映射模块通过全局优化初始里程计映射并输出新的测程图,然后更新

使用新功能进行地图绘制地图。由于空间问题,我们只专注于测程模块。我们请读者参考[8],

[9] 有关特征提取和映射的详细过程。

B. 特征提取

该模块输入原始点云并输出边要素组 Fe 和一组平面要素,Fp. 读者可以看到 [9], [8] 了解详细的实现。C. 具有迭代ESKF的激光雷达惯性里程计

LIO 模块使用 IMU 测量和功能在两次连续扫描中提取以估计相对车辆的改造。我们使用以机器人为中心的公式来构建迭代的 ESKF,因为它可以防止不确定性不断增大导致的线性化误差[28],[29]. 设 Fw 表示固定世界框架,Fbk

代表在 k 激光雷达时间步长处的 IMU 附加框架和 Flk

代表K 激光雷达时间步长的激光雷达帧。请注意,在我们的工作中,本地帧始终设置为 IMU 贴合帧上一个激光雷达时间步长。

  1. 状态定义:2) 传播:3) 更新:4) 状态组成:5) 初始化:

如本节所述。III-C,机器人中心公式可以促进初始化

筛选器状态。关于初始参数设置,在我们的

实现,(i)初始加速度偏置和激光雷达IMU外征参数通过离线标定获得,而初始陀螺仪偏置是相应的固定测量,(ii)初始辊

并且俯仰是从移动前的无偏加速度测量中获得的,并且 (iii) 初始局部重力为通过变换 中表示的重力矢量获得使用初始滚动和音高来自(二)。

四、实验

我们现在评估 LINS 在不同情况下的性能场景并将其与乐高 [9]、LOAM [8] 和

LIOM [5],在具有 2.4GHz 四核的笔记本电脑上和 8Gib 内存。所有方法均在C++中实现

并使用机器人操作系统 (ROS) 执行 [33]在 Ubuntu Linux 中。在下面的实验中,映射

LINS模块由映射算法实现在乐高[9]中提出。大部分作品仅

分析了最终轨迹的性能,即测程图已经被地图细化了。但是,我们发现

初始测程法,即纯粹产生的测程法由测程模块,对整体影响很大

性能。因此,我们同时考虑了这两个因素。为了区分这两种里程计,我们称之为里程计

由地图细化为地图细化里程计 (MRO),以及初始里程计作为纯里程计 (PO)

A. 室内实验

在室内测试中,选择了一个停车场作为实验区域如图4(a)所示。我们安装了我们的

如图4(b)所示,总线上的传感器套件,其中RSLiDAR-16安装在顶部并放置了IMU

巴士内。图5(a)、5(b)和5(c)提供了结果分别来自LINS,LeGo和LOAM。虽然我们

没有基本事实,我们仍然可以目视检查LINS-PO的轨迹可以与MRO精确对齐

轨迹(通常,MRO 在室内几乎无漂移,并且比PO更准确),而LeGO-PO和LIOM-PO

两者都在偏航角上有明显的漂移。

B. 大型户外环境

为了验证泛化性和稳定性,实验在四个室外应用场景中进行:城市、港口、

工业园区和森林。图3展示了一些照片的环境和相应的地图生成林。我们测量了GPS接收器产生的地面真相与提供的估计位置之间的差距通过指示漂移量的每种方法,以及

然后将其与行进的距离进行比较以产生相漂移。实验结果列于表I。

总之,LINS 在所有测试场景中都表现良好。对特定环境进行详细分析

下面。

1)端口实验:我们评估了端口中的LINS广东。传感器套件由Velodyne VLP组成

16 激光雷达和固定在顶部的 Xsens MTi-G-710 IMU的汽车。地面真实轨迹由GPS提供

模块。我们开始从周围的路径记录数据按容器。汽车驶向码头,然后返回

行驶距离1264米后的原始地点。它值得一提的是,集装箱会进出

不断改变全球地图,这可能会破坏MRO 的性能。根据表I,我们发现LIN和LIOM存在

最低漂移。LINS-MRO的相对漂移为1.56%,略高于LIOM的1.40%,而LINS-PO的相对漂移仅为2.75%。结果表明结合IMU和激光雷达可以有效提高精度。即使LOAM和LeGO的相对漂移看起来很小,他们可能会遭受巨大的方向

错误。图6(a)和6(b)提供了详细的轨迹和

乐高和林斯的地图。与基本事实相比

(绿线),我们找到乐高的轨迹(包括

MRO 和 PO)转向围绕

第一回合。我们还可以目视检查变形

图6(c)中乐高构建的地图。相比之下,林斯

表现出与地面真相轨迹的良好一致性

生成的地图呈现了对现实世界环境的高保真度。即使在功能所在的第一个回合

不足(每次扫描仅提供大约 30 个边缘特征),

LINS表现非常好,这表明我们的算法

对无特征的场景更可靠。

五、结语

在本文中,我们开发了一种轻量级激光雷达惯性机器人导航的状态估计器。使用迭代的 ESKF

通过以机器人为中心的公式,我们的算法能够提供实时、长期、稳健和高精度

具有挑战性环境下的自我运动估计。这所提出的算法在各种场景中得到验证,包括城市、口、工业园区、森林、室内停车场。实验结果表明,LINS性能优于

仅激光雷达的方法并达到可比的性能采用最先进的激光雷达惯性里程计,具有

更低的计算成本。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值