项目设计场景面试题汇总

目录

项目设计场景面试题汇总

一、高并发系统设计

1. 10W OPS 的会员系统,如何设计?

2. 如何设计一个高并发系统?

二、搜索引擎设计

搜索引擎设计:信息搜索怎么避免大海捞针?

三、红包架构设计

百亿级超大流量红包架构方案

四、交友系统设计

需要设计一款基于 LBS 的交友系统,如何设计地理空间邻近算法?

五、网盘系统设计

万亿 GB 网盘如何实现秒传与限速?

六、短视频系统设计

短视频系统设计:如何支持三千万用户同时在线看视频?

七、微博系统设计

微博系统设计:怎么应对热点事件的突发访问压力?

八、海量数据计数器设计

海量数据的计数器要如何设计?

九、未读数系统设计

50 万 QPS 下如何设计未读数系统?

十、电商系统设计

电商系统开发中会都遇到了哪些问题?

十一、密码管理

为什么忘记密码要重置而不是告诉你原密码?

十二、其他设计问题

如何管理昵称重复?

如何设计一个分布式缓存系统?

1 亿个数据取出最大前 100 个有什么方法?

十三、大厂实践案例

京东电商大促高可用保障实践

咸鱼交易业务状态机方案实践

京东内部 Redis 性能优化最佳实践

阿里内部设计模式最佳实践

美团即时物流架构落地实践

京东内部缓存应用最佳实践

携程门票秒杀系统优化实践

喜马拉雅亿级推送系统实践

喜马拉雅自研网关技术实践


在软件系统设计和开发中,经常会遇到各种复杂的项目场景,需要我们运用合适的技术和架构来解决问题。以下是对一些常见项目设计场景面试题的汇总和分析。

一、高并发系统设计

1. 10W OPS 的会员系统,如何设计?

  • 数据库设计:采用分库分表策略,将会员数据分散到多个数据库和表中,以提高查询和写入性能。可以根据会员 ID 等关键属性进行哈希分片。
  • 缓存策略:使用缓存来存储经常访问的会员信息,如 Redis 等内存数据库。可以缓存会员的基本信息、最近的活动记录等。
  • 负载均衡:部署多台服务器,通过负载均衡器(如 Nginx)将请求分发到不同的服务器上,以提高系统的并发处理能力。
  • 异步处理:对于一些耗时的操作,如发送通知、记录日志等,可以采用异步处理的方式,避免阻塞主线程。

2. 如何设计一个高并发系统?

  • 架构设计:采用分布式架构,将系统拆分为多个独立的服务,每个服务可以独立部署和扩展。可以使用微服务架构来实现。
  • 缓存:合理使用缓存,减少对数据库的访问压力。可以使用多级缓存,如本地缓存、分布式缓存等。
  • 数据库优化:选择合适的数据库引擎,进行数据库索引优化、查询优化等。可以采用读写分离、分库分表等策略。
  • 负载均衡:使用负载均衡器将请求分发到多个服务器上,提高系统的并发处理能力。可以采用硬件负载均衡器或软件负载均衡器。
  • 异步处理:对于一些耗时的操作,采用异步处理的方式,提高系统的响应速度。可以使用消息队列来实现异步处理。

二、搜索引擎设计

搜索引擎设计:信息搜索怎么避免大海捞针?

  • 索引构建:建立高效的索引结构,如倒排索引,以便快速定位包含特定关键词的文档。
  • 分词技术:对用户输入的查询进行分词处理,提高查询的准确性。
  • 相关性排序:根据文档与查询的相关性进行排序,将最相关的文档排在前面。可以使用 TF-IDF、BM25 等算法进行相关性计算。
  • 缓存:缓存热门查询和结果,以提高响应速度。
  • 分布式搜索:采用分布式搜索架构,将索引和搜索任务分布到多个服务器上,提高搜索的性能和可扩展性。

三、红包架构设计

百亿级超大流量红包架构方案

  • 数据库设计:采用分库分表策略,将红包数据分散到多个数据库和表中,以提高查询和写入性能。可以根据红包 ID、用户 ID 等关键属性进行哈希分片。
  • 缓存策略:使用缓存来存储热门红包信息、用户已领取的红包信息等,以减少对数据库的访问压力。可以使用 Redis 等内存数据库。
  • 限流策略:对红包领取请求进行限流,防止系统被恶意攻击或过度请求导致崩溃。可以使用令牌桶算法、漏桶算法等限流算法。
  • 异步处理:对于红包发放、领取等操作,可以采用异步处理的方式,提高系统的响应速度。可以使用消息队列来实现异步处理。
  • 监控和报警:建立完善的监控系统,实时监控红包系统的运行状态,如红包发放速度、领取速度、系统负载等。设置合理的报警阈值,及时发现和处理问题。

四、交友系统设计

需要设计一款基于 LBS 的交友系统,如何设计地理空间邻近算法?

  • 地理哈希算法:将地理位置信息转换为一个字符串,通过比较字符串的相似性来判断地理位置的邻近性。
  • 基于距离计算的算法:使用经纬度计算两个地点之间的距离,根据距离远近进行排序和筛选。可以使用 Haversine 公式等算法进行距离计算。
  • 空间索引:建立空间索引结构,如 R-tree、Quad-tree 等,以便快速查询附近的用户。
  • 缓存:缓存附近用户的信息,以提高查询速度。可以根据用户的移动情况定期更新缓存。

五、网盘系统设计

万亿 GB 网盘如何实现秒传与限速?

  • 秒传实现:通过计算文件的哈希值,判断文件是否已经存在于网盘中。如果文件已经存在,则直接返回已存在的文件链接,实现秒传。
  • 限速策略:采用限速算法,对用户的上传和下载速度进行限制。可以根据用户的等级、付费情况等因素进行限速。可以使用令牌桶算法、漏桶算法等限速算法。
  • 分布式存储:采用分布式存储架构,将文件分散存储到多个服务器上,提高存储的可靠性和可扩展性。
  • 缓存:缓存热门文件,以提高文件的访问速度。可以使用 CDN 等技术进行缓存。

六、短视频系统设计

短视频系统设计:如何支持三千万用户同时在线看视频?

  • 内容分发网络(CDN):利用 CDN 将视频内容分发到全球各地的节点上,用户可以从离自己最近的节点获取视频内容,提高视频的加载速度。
  • 分布式架构:采用分布式架构,将系统拆分为多个独立的服务,如视频存储服务、视频播放服务、用户管理服务等。每个服务可以独立部署和扩展,以提高系统的并发处理能力。
  • 缓存策略:使用缓存来存储热门视频、用户的播放记录等信息,以减少对数据库的访问压力。可以使用 Redis 等内存数据库。
  • 负载均衡:使用负载均衡器将用户的请求分发到多个服务器上,提高系统的并发处理能力。可以采用硬件负载均衡器或软件负载均衡器。
  • 异步处理:对于视频的上传、转码、审核等操作,可以采用异步处理的方式,提高系统的响应速度。可以使用消息队列来实现异步处理。

七、微博系统设计

微博系统设计:怎么应对热点事件的突发访问压力?

  • 缓存:缓存热门微博、用户的关注列表等信息,以减少对数据库的访问压力。可以使用 Redis 等内存数据库。
  • 限流策略:对微博的发布、评论、点赞等操作进行限流,防止系统被恶意攻击或过度请求导致崩溃。可以使用令牌桶算法、漏桶算法等限流算法。
  • 异步处理:对于微博的发布、评论、点赞等操作,可以采用异步处理的方式,提高系统的响应速度。可以使用消息队列来实现异步处理。
  • 热点数据分离:将热点微博数据分离出来,存储到专门的服务器上,以提高热点数据的访问速度。
  • 弹性扩容:根据系统的负载情况,自动进行服务器的扩容和缩容,以保证系统的稳定性和可靠性。

八、海量数据计数器设计

海量数据的计数器要如何设计?

  • 分布式计数器:采用分布式架构,将计数器分散到多个服务器上,每个服务器负责一部分数据的计数。可以使用 Redis 的原子操作来实现分布式计数器。
  • 数据分区:对数据进行分区,将不同的数据分配到不同的计数器上,以提高计数的效率和可扩展性。
  • 定期合并:定期将各个计数器的值进行合并,得到最终的计数结果。
  • 缓存:缓存计数器的值,以减少对计数器的访问压力。可以使用 Redis 等内存数据库进行缓存。

九、未读数系统设计

50 万 QPS 下如何设计未读数系统?

  • 缓存策略:使用缓存来存储用户的未读数信息,以减少对数据库的访问压力。可以使用 Redis 等内存数据库。
  • 异步更新:对于未读数的更新操作,可以采用异步处理的方式,提高系统的响应速度。可以使用消息队列来实现异步更新。
  • 数据分区:对用户的未读数信息进行分区,将不同用户的未读数信息分配到不同的服务器上,以提高系统的并发处理能力。
  • 监控和报警:建立完善的监控系统,实时监控未读数系统的运行状态,如未读数的更新速度、查询速度、系统负载等。设置合理的报警阈值,及时发现和处理问题。

十、电商系统设计

电商系统开发中会都遇到了哪些问题?

  • 高并发访问:在促销活动、热门商品发布等情况下,电商系统会面临大量用户的并发访问,可能导致系统性能下降、响应时间延长甚至崩溃。
  • 库存管理:准确管理商品库存,防止超卖和库存不准确的问题。需要考虑并发更新库存、库存预警等情况。
  • 订单处理:高效处理订单的创建、支付、发货等流程,确保订单的准确性和及时性。需要考虑订单状态的同步、异常订单的处理等问题。
  • 支付安全:保障用户支付过程的安全,防止支付信息泄露和支付欺诈。需要采用安全的支付接口和加密技术。
  • 物流跟踪:与物流公司合作,实现物流信息的实时跟踪和查询,提高用户的购物体验。
  • 商品搜索:提供高效准确的商品搜索功能,让用户能够快速找到所需商品。需要考虑搜索算法的优化、索引的建立等问题。

十一、密码管理

为什么忘记密码要重置而不是告诉你原密码?

  • 安全性考虑:如果告诉用户原密码,可能会导致密码泄露的风险增加。重置密码可以确保用户设置一个新的安全密码。
  • 密码存储方式:通常密码是经过加密存储的,无法直接获取原密码。重置密码可以让用户设置一个新的密码,而不需要知道原密码。
  • 用户体验:重置密码可以让用户有机会设置一个更容易记住的密码,提高用户体验。

十二、其他设计问题

如何管理昵称重复?

  • 昵称查重:在用户注册或修改昵称时,进行昵称查重操作,确保昵称的唯一性。可以使用数据库索引或哈希表等数据结构来快速查重。
  • 昵称生成规则:如果用户输入的昵称已经存在,可以根据一定的规则生成一个新的昵称,如在昵称后面加上数字、特殊字符等。
  • 昵称申诉机制:如果用户认为自己的昵称被错误地占用,可以提供昵称申诉机制,让用户提交申诉请求,经过审核后解决昵称重复的问题。

如何设计一个分布式缓存系统?

  • 数据存储:选择合适的存储引擎,如 Redis、Memcached 等,来存储缓存数据。可以根据数据的大小、访问频率等因素选择合适的存储引擎。
  • 缓存策略:制定合理的缓存策略,如缓存过期时间、缓存淘汰算法等。可以根据数据的重要性和访问频率来设置不同的缓存策略。
  • 分布式架构:采用分布式架构,将缓存数据分散存储到多个服务器上,提高缓存的容量和可扩展性。可以使用一致性哈希等算法来实现分布式存储。
  • 数据同步:确保缓存数据的一致性,当数据发生变化时,及时更新缓存。可以使用消息队列等技术来实现数据同步。
  • 监控和报警:建立完善的监控系统,实时监控缓存系统的运行状态,如缓存命中率、缓存容量、系统负载等。设置合理的报警阈值,及时发现和处理问题。

1 亿个数据取出最大前 100 个有什么方法?

  • 分治法:将数据分成多个小的数据集,分别找出每个小数据集中的最大前 100 个数据,然后再将这些小数据集中的最大前 100 个数据进行合并,最终得到 1 亿个数据中的最大前 100 个数据。
  • 堆排序法:构建一个小顶堆,将数据依次插入堆中,当堆的大小超过 100 时,删除堆顶元素。最后堆中的 100 个元素就是最大的前 100 个数据。
  • 分布式处理:将数据分布到多个服务器上,每个服务器处理一部分数据,找出各自的最大前 100 个数据,然后再将这些数据进行合并,得到最终的结果。

十三、大厂实践案例

京东电商大促高可用保障实践

  • 架构优化:提前进行架构优化,包括数据库优化、缓存优化、负载均衡优化等,以应对大促期间的高并发访问。
  • 容量规划:根据历史数据和业务预测,进行合理的容量规划,确保服务器、数据库、缓存等资源能够满足大促期间的需求。
  • 压测和演练:进行全面的压力测试和故障演练,提前发现和解决系统中的潜在问题。
  • 监控和报警:建立完善的监控系统,实时监控系统的运行状态,及时发现和处理问题。设置合理的报警阈值,确保在问题出现时能够及时通知相关人员。
  • 应急预案:制定应急预案,当系统出现故障时,能够快速响应和恢复,确保业务的连续性。

咸鱼交易业务状态机方案实践

  • 状态机设计:根据交易业务的流程,设计合理的状态机模型,明确各个状态之间的转换条件和动作。
  • 状态持久化:将交易状态持久化到数据库中,确保状态的可靠性和可恢复性。
  • 事件驱动:采用事件驱动的方式,当交易状态发生变化时,触发相应的事件,执行相应的动作。
  • 监控和报警:建立完善的监控系统,实时监控交易状态的变化,及时发现和处理问题。设置合理的报警阈值,确保在交易出现异常时能够及时通知相关人员。

京东内部 Redis 性能优化最佳实践

  • 内存优化:合理设置 Redis 的内存参数,避免内存溢出。可以使用 Redis 的内存淘汰策略、数据压缩等技术来优化内存使用。
  • 数据结构选择:根据业务需求,选择合适的数据结构,如字符串、哈希表、列表、集合、有序集合等。不同的数据结构在不同的场景下性能表现不同。
  • 命令优化:避免使用一些性能较差的命令,如 KEYS 命令等。可以使用 SCAN 命令等替代方案。
  • 集群部署:采用 Redis 集群部署,提高系统的可扩展性和可用性。可以使用 Redis Sentinel 或 Redis Cluster 等技术来实现集群部署。

阿里内部设计模式最佳实践

  • 单例模式:确保一个类只有一个实例,并提供一个全局访问点。在阿里的很多系统中,单例模式被广泛应用于配置管理、日志记录等场景。
  • 工厂模式:根据不同的条件创建不同类型的对象。在阿里的很多系统中,工厂模式被广泛应用于对象的创建过程中,提高了系统的可维护性和可扩展性。
  • 装饰器模式:动态地给一个对象添加一些额外的职责。在阿里的很多系统中,装饰器模式被广泛应用于功能扩展和性能优化等场景。
  • 代理模式:为其他对象提供一种代理以控制对这个对象的访问。在阿里的很多系统中,代理模式被广泛应用于权限控制、远程调用等场景。

美团即时物流架构落地实践

  • 订单分配:采用合理的订单分配算法,将订单分配给最合适的骑手,提高配送效率。可以考虑骑手的位置、订单的重量、距离等因素。
  • 路径规划:为骑手规划最优的配送路径,减少配送时间。可以使用地图导航算法、路径优化算法等技术。
  • 实时监控:建立实时监控系统,监控骑手的位置、订单状态等信息,及时发现和处理问题。可以使用 GPS 定位、移动网络等技术。
  • 数据分析:对配送数据进行分析,优化配送策略,提高配送效率。可以使用大数据分析、机器学习等技术。

京东内部缓存应用最佳实践

  • 缓存策略:制定合理的缓存策略,包括缓存的过期时间、缓存的淘汰算法等。可以根据业务需求和数据的访问频率来设置不同的缓存策略。
  • 缓存预热:在系统启动时,将一些热门数据加载到缓存中,提高系统的响应速度。可以使用定时任务、数据同步等技术来实现缓存预热。
  • 缓存穿透、缓存雪崩、缓存击穿的处理:针对缓存穿透、缓存雪崩、缓存击穿等问题,制定相应的解决方案,确保缓存的可靠性和稳定性。可以使用布隆过滤器、互斥锁、异步更新等技术来处理这些问题。
  • 缓存与数据库的一致性:确保缓存中的数据与数据库中的数据一致,避免出现数据不一致的情况。可以使用双写一致性、失效通知等技术来保证缓存与数据库的一致性。

携程门票秒杀系统优化实践

  • 限流策略:对秒杀请求进行限流,防止系统被恶意攻击或过度请求导致崩溃。可以使用令牌桶算法、漏桶算法等限流算法。
  • 异步处理:对于秒杀订单的处理,可以采用异步处理的方式,提高系统的响应速度。可以使用消息队列来实现异步处理。
  • 库存管理:准确管理门票库存,防止超卖的情况发生。可以使用数据库事务、乐观锁等技术来保证库存的准确性。
  • 缓存预热:在秒杀活动开始前,将热门门票的信息加载到缓存中,提高系统的响应速度。可以使用定时任务、数据同步等技术来实现缓存预热。

喜马拉雅亿级推送系统实践

  • 推送策略:根据用户的兴趣、行为等因素,制定个性化的推送策略,提高推送的准确性和效果。可以使用机器学习、大数据分析等技术。
  • 推送渠道:选择合适的推送渠道,如手机通知、短信、邮件等,提高推送的到达率和效果。可以根据用户的偏好和渠道的特点来选择推送渠道。
  • 实时监控:建立实时监控系统,监控推送的效果和系统的运行状态,及时发现和处理问题。可以使用数据分析、日志监控等技术。
  • 性能优化:对推送系统进行性能优化,提高推送的速度和效率。可以使用分布式架构、缓存技术、异步处理等技术。

喜马拉雅自研网关技术实践

  • 路由管理:实现灵活的路由管理,根据不同的请求路径将请求转发到不同的服务上。可以使用动态路由、负载均衡等技术。
  • 安全防护:提供安全防护功能,如身份验证、授权、访问控制等,保护系统的安全。可以使用 OAuth2、JWT 等技术。
  • 性能优化:对网关进行性能优化,提高请求的处理速度和效率。可以使用缓存技术、异步处理、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值