散点图、直方图、柱形图的绘制

本文介绍了如何使用Python进行数据可视化,包括散点图的绘制、条形图的创建,以及直方图的制作。散点图适用于展示两个变量之间的关系,条形图可用于数量和频率统计,如市场饱和度,而直方图则用于未统计过数据的分布情况分析。
摘要由CSDN通过智能技术生成
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font=font_manager.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')
a = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
b = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]
plt.figure(figsize=(20,8),dpi=80)#绘制图形大小
x_3=range(1,32)
x_10=range(51,82)
plt.scatter(x_3,a,label='日期',color='red',marker='^',s=100)#确定x,y轴及图例信息和颜色等
#marker:确定点的形状,edgecolors:点的轮廓线的颜色,s:点的大小
plt.scatter(x_10,b,label='气温',color='pink',edgecolors='black')
plt.legend(loc='upper left',prop=my_font)#图例显示,显示中文用prop仅图例如此
'''loc 参数用于设置图例的位置,可以使用字符串或数字来指定不同的位置。常用的字符串参数包括:
"best":自动选择最佳位置。
"upper right":右上角。
"upper left":左上角。
"lower right":右下角。
"lower left":左下角。'''
x_ticks=[f"3月{i}日" for i in x_3]
x_ticks+=[f"10月{i-50}日" for i in x_10]
x_=list(x_3)+list(x_10)
plt.xticks(x_[::3],x_ticks[::3],rotation=45,fontproperties=my_font)
plt.title('3月及10月温度随时间的变化',fontproperties=my_font)
plt.xlabel('日期',fontproperties=my_font)
plt.ylabel('气温',fontproperties=my_font)

plt.show()

散点图的绘制:

不同条件 ( 维度 ) 之间的内在关联关系
观察数据的离散聚合程度
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font=font_manager.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')
#绘制条形图
a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5\n:最后的骑士","摔跤吧!爸爸","加勒比海盗5\n:死无对证","金刚\n:骷髅岛","极限特工\n:终极回归","生化危机6\n:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠\n:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]
b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]

plt.figure(figsize=(30,10),dpi=80)
plt.xlabel('电影作品',fontproperties=my_font)
plt.ylabel('票房金额',fontproperties=my_font)
plt.bar(range(len(a)),b,width=0.5,color='green')

plt.xticks(range(len(a)),a,fontproperties=my_font,rotation=45)
plt.grid(alpha=0.3)
plt.show()

绘制条形图 

'''假设你知道了列表a中电影分别在2017-09-14(b_14), 2017-09-15(b_15), 2017-09-16(b_16)三天的票房,为了展示列表中电影本身的票房以及同其他电影的数据对比情况,应该如何更加直观的呈现该数据?

a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]
'''
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font=font_manager.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')
plt.figure(figsize=(20,8),dpi=80)
a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]

bar_width=0.2
x_14=list(range(len(a)))
x_15=[i+bar_width for i in x_14]
x_16=[i+bar_width*2 for i in x_14]
plt.bar(x_16,b_16,width=bar_width,label='9月16日')
plt.bar(x_15,b_15,width=bar_width,label='9月15日')
plt.bar(x_14,b_14,width=bar_width,label='9月14日')
plt.legend(prop=my_font)
plt.xticks(x_15,a,fontproperties=my_font)
plt.xlabel('影名',fontproperties=my_font)
plt.ylabel('数据',fontproperties=my_font)
plt.grid()
plt.show()

条形图:

数量统计

频率统计(市场饱和度)

'''假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据?'''

from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font=font_manager.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')
a=[131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
print(len(a),max(a),min(a),max(a)-min(a))
plt.figure(figsize=(20,8),dpi=80)
d=3#计算组距,应为最大值减最小值结果的约数
num_bin=(max(a)-min(a))//d#一定要能整除d,否则有部分值会溢出,超过间距
plt.xticks(range(min(a),max(a)+d,d))
#最大值应为max(a)+d,因为可能最大值在最后一组的组距中间而不是最后,因此加一个组距可以保证包住最大值
plt.hist(a,num_bin,density=True,color='orange')#density频数改为频率,自动计算
plt.grid(alpha=0.5)
plt.show()



 

#用统计后的数据做所谓的直方图,要采用条形图,直方图只能用未统计的单个数据
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font=font_manager.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')
interval = [0,5,10,15,20,25,30,35,40,45,60,90]#时间间隔
width = [5,5,5,5,5,5,5,5,5,15,30,60]#宽度
plt.figure(figsize=(20,8),dpi=80)
quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47]

plt.bar(range(12),quantity,width=1)#x和y要一一对应
x_=[i-0.5 for i in range(13)]
x_1=interval+[150]
print(len(x_1))
plt.xticks(x_,x_1)#在调整x轴刻度时可以有大于x的数

plt.grid(alpha=0.5,linestyle='-.')#linestyle:线段形式
plt.show()

 直方图:一般来说能够使用plt.hist方法的的是那些没有统计过的数据

用户的年龄分布状态
一段时间内用户点击次数的分布状态
用户活跃时间的分布状态
1. 应该选择那种图形来呈现数据
2. matplotlib.plot ( x,y )
3. matplotlib.bar ( x,y )
4. matplotlib.scatter ( x,y )
5. matplotlib.hist ( data,bins ,density )
6. xticks yticks 的设置
7. label titile,grid 的设置
8. 绘图的大小和保存图片
matplotlib 使用的 流程 总结
1. 明确问题
2. 选择图形的呈现方式
3. 准备数据
4. 绘图和图形完善
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值