机器学习开发流程

 

 1)算法是核心,数据计算是基础

大部分复杂模型的算法设计都是算法工程师在做,而我们
1、分析很多的数据
2、分析具体的业务
3、应用常见的算法
4、特征工程、调参数、优化

我们应该怎么做

1. 学会分析问题, 使用机器学习算法的目的,想要算法完成何种任务
2. 掌握算法基本思想,学会对问题用相应的算法解决
3. 学会利用库或者框架解决问题

  机器学习算法分类:

监督学习
分类    k- 近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
回归    线性回归、岭回归
标注    隐马尔可夫模型     ( 不做要求 )
无监督学习
聚类    k-means

 

监督学习(英语:Supervised learning),可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)

无监督学习(英语:Supervised learning),可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值所组成。

概念:分类是监督学习的一个核心问题,在监督学习中,当输出变量取有限个离散值时,预测问题变成为分类问题。最基础的便是二分类问题,即判断是非,从两个类别中选择一个作为预测结果;

概念:回归是监督学习的另一个重要问题。回归用于预测输入变量和输出变量之间的关系,输出是连续型的值 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值