(1)算法是核心,数据和计算是基础
大部分复杂模型的算法设计都是算法工程师在做,而我们
1、分析很多的数据
2、分析具体的业务
3、应用常见的算法
4、特征工程、调参数、优化
我们应该怎么做
1.
学会分析问题,
使用机器学习算法的目的,想要算法完成何种任务
2.
掌握算法基本思想,学会对问题用相应的算法解决
3.
学会利用库或者框架解决问题
机器学习算法分类:
•
监督学习
•
分类
k-
近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
•
回归 线性回归、岭回归
•
标注 隐马尔可夫模型
(
不做要求
)
•
无监督学习
•
聚类
k-means
监督学习(英语:Supervised learning),可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。
无监督学习(英语:Supervised learning),可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值所组成。
概念:分类是监督学习的一个核心问题,在监督学习中,当输出变量取有限个离散值时,预测问题变成为分类问题。最基础的便是二分类问题,即判断是非,从两个类别中选择一个作为预测结果;
概念:回归是监督学习的另一个重要问题。回归用于预测输入变量和输出变量之间的关系,输出是连续型的值。