8 图像去噪 滤波 锐化 边缘检测案例(matlab程序)

该文介绍了图像处理中的锐化技术和边缘检测方法,包括使用梯度、Laplace算子和高通滤波进行图像锐化,以及MATLAB中预置的Roberts、Sobel和Prewitt等边缘检测算子的应用。示例代码展示了从图像去噪、锐化到直方图均衡化和不同边缘检测器的整个流程。
摘要由CSDN通过智能技术生成

1.简述

       学习目标:一个图像处理的经典综合案例

一、图像锐化的原理
  图像锐化的目的是凸显物体的细节轮廓,通常可以用梯度、Laplace算子和高通滤波来实现,下面一一说明:

1、梯度法
梯度计算可以参考 小白学习图像处理——canny边缘检测算法 ,假设Gx为x方向的方向导数,Gy为y方向的方向导数,那么梯度就是Gx和Gy的平方和开根号:
G = [ G x 2 + G y 2 ] 2 G = [Gx^2 + Gy^2]^2
G=[Gx 
2
 +Gy 
2
 ] 
2
 

其中,计算Gx和Gy的过程就是用一个预先定义的矩阵和图像做一次二维卷积,我们把这个预先定义的矩阵成为模板算子,计算Gx和Gy的算子有很多种。

二、边缘检测
  在matlab中预置了一些算子,如:roberts、sobel、prewitt、log 和 canny 算子等

1、图像的线段检测
  首先谈谈图像线段的检测,线段检测的原理类似梯度,线段通常具有这样的特点,线段上的灰度与左右两侧的灰度相比更加突出,因为它的灰度要么比两边都大,要么比两边都小,我们可以将像素点的灰度同时和两边灰度进行对比,判断它是否属于某一条边。

 

2.<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

素馨堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值