1.简述
学习目标:一个图像处理的经典综合案例
一、图像锐化的原理
图像锐化的目的是凸显物体的细节轮廓,通常可以用梯度、Laplace算子和高通滤波来实现,下面一一说明:
1、梯度法
梯度计算可以参考 小白学习图像处理——canny边缘检测算法 ,假设Gx为x方向的方向导数,Gy为y方向的方向导数,那么梯度就是Gx和Gy的平方和开根号:
G = [ G x 2 + G y 2 ] 2 G = [Gx^2 + Gy^2]^2
G=[Gx
2
+Gy
2
]
2
其中,计算Gx和Gy的过程就是用一个预先定义的矩阵和图像做一次二维卷积,我们把这个预先定义的矩阵成为模板算子,计算Gx和Gy的算子有很多种。
二、边缘检测
在matlab中预置了一些算子,如:roberts、sobel、prewitt、log 和 canny 算子等
1、图像的线段检测
首先谈谈图像线段的检测,线段检测的原理类似梯度,线段通常具有这样的特点,线段上的灰度与左右两侧的灰度相比更加突出,因为它的灰度要么比两边都大,要么比两边都小,我们可以将像素点的灰度同时和两边灰度进行对比,判断它是否属于某一条边。
2.<