学了一段时间的机器学习和深度学习了,也上手了一些项目,在我看来,无论机器学习还是深度学习,其要做的事情其实是相同的,都是对数据进行处理,用数据拟合模型。
所谓模型就是一个数学函数罢了,就像我们初中学的描点画图,只不过这里的数据是多维度的,所拟合出的函数也是复杂的。
我认为这个过程中最重要的部分是数据的处理和模型的构建。首先数据是我们进行模型训练的基础,如果数据本身就是不准确的,那训练出来的模型也绝对不好。因此数据的处理是重中之重。其次是模型的构建,就像我们用线性函数无法去拟合二次函数一样,我们需要构建一个合适的函数,用数据去确定其参数,但是这里也是最复杂的,因为我们无法准确知道数据满足的函数是什么,我们大多情况下是根据数据的特点以及经验去选择。也就是很多时候是试出来的。虽然函数越复杂与数据的拟合度就越高,但是也会导致过拟合的现象,所以这里需要多想多看多总结。
其他训练方法我觉得并不是难点,这些是我个人的一些观点吧,如果大家有更好的观点欢迎留言。我们一起探讨。