为多个扩展目标跟踪设计的线性时间联合概率数据关联算法研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

文献来源:

摘要:
针对多目标跟踪的联合概率数据关联(JPDA)滤波器基于一个假设,即最多一次测量来自目标对象。然而,随着高分辨率传感器的发展,经常出现从单个对象获取多个空间分布的检测情况。为了应对这一新兴的数据关联挑战,本文提出了基于Poisson空间测量模型的用于扩展对象的JPDA方法。通过放宽一个目标最多得到一个测量的约束,可以在测量和目标数量的线性复杂度下获得边际关联概率。该方法与基于分区的多扩展目标跟踪算法进行了比较。

随着短程和高分辨率传感器(如光探测雷达LIDAR)的发展,单个目标对象通常占据多个传感器分辨率单元,对象的空间信息变得重要。这个问题被称为扩展目标跟踪(EOT),它考虑了对象动态和空间信息的同时估计。

Gilholm等人在[2],[3]中提出的广泛使用的模型采用泊松点过程(PPP)来模拟空间扩展和测量数量。大多数EOT算法将对象近似为刚性形状,如矩形、椭圆形和星凸形。在[4]中,引入了一个定向边界框模型,结合粒子滤波器用于DARPA Urban Grand Challenge期间的EOT。随机矩阵方法[5],[6]将测量视为受噪声干扰的对象质心上的检测,这些检测分布在范围内。随机超表面模型[7]对对象范围进行参数化为星凸形状,并使用非线性卡尔曼滤波器来估计形状变量。为了对形状进行参数化,[8]和[9]实现了高斯过程。在[10]中,扩展对象由一组反射点建模,并使用期望最大化(EM)算法处理未知关联。在我们之前的作品中[11],[12],我们明确地将椭圆参数化为方向和半轴长度,并使用乘性噪声构建非线性测量方程。

由于多个测量可能来自一个对象,聚类和分区是采用传统数据关联方法的最直观解决方案之一,例如在概率假设密度(PHD)滤波器[13]、概率多假设跟踪(PMHT)[14]或联合概率数据关联(JPDA)[15]框架内。另一类扩展对象跟踪数据关联方法通过对所有可能的组合排列所有测量在门控区域内直接解决多个测量到目标的关联。假设每种组合是均匀分布的,并且需要每种组合的创新增益。即使计算负载可以通过迭代改进,计算候选测量组合的复杂性仍然非常高。Streit推导了一个JPDA强度滤波器(JiFi)[19],用于估计每个扩展对象的强度函数。JiFi方法也基于[2],[3]的模型,并且避免了对关联概率进行繁琐计算。Granström等人提出了基于采样的随机优化方法来获取最可能的关联。

在本研究中,我们提出了一个用于多个扩展目标跟踪的线性时间联合概率数据关联(ET-JPDA)滤波器。假设来自一个对象的测量数量服从泊松分布。与[3]一致,泊松均值在传统跟踪方法中扮演了检测概率的类似角色。没有明确的探测概率被使用。泊松模型允许对边际关联概率进行精确解决。对于形状估计,我们采用了我们最近提出的方法[12],通过递归地整合单个测量明确估计椭圆形扩展对象的方向和半轴长度。由于边际关联概率的紧凑表达式和对来自一个目标的多个测量的递归整合,整体算法的时间复杂度是线性的,与测量和目标数量成正比。

📚2 运行结果

部分代码:

% first guess 
r = [-20 -250 10 10;-20 250 10 -10];
p = [0 30 30;0 15 15 ];

N = size(r,1);

Cr(:,:,1) = diag([900 900 10 10]);
Cp(:,:,1) = diag([.2 400 400]);

Cr(:,:,2) = diag([900 900 10 10]);
Cp(:,:,2) = diag([.02 100 100]);


%% plot first guess
for n = 1:N
    plot_extent([r(n,1:2) p(n,:)],'--','r',1);
end


for t = 1:nr_timesteps
    
    [r,p,Cr,Cp] = MEOT_JPDA(meas{t},r,p,Cr,Cp,cp,H,Cv,mlambda,clambda);
    
    %% Visulize  
    if mod(t,3)==1
        
        pMeas = plot(meas{t}(1,:),meas{t}(2,:),'k.');
        for n = 1:N
            plotGT = plot_extent(gt(n,1:5,t),'-','k',1);            
            plotEst = plot_extent([r(n,1:2),p(n,:)],'-','g',1);
        end        
        pause(0.001)
    end

    
    %% prediction
    for n = 1:N
        r(n,:) = Ar*r(n,:)';
        p(n,:) = Ap*p(n,:)';
        Cr(:,:,n) = Ar*Cr(:,:,n)*Ar'+Crw;
        Cp(:,:,n) = Ap*Cp(:,:,n)*Ap'+Cpw(:,:,n);
    end
end
    legend([plotGT plotEst],{'Ground Truth','Estimates'})

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

S. Yang, K. Thormann and M. Baum, "Linear-Time Joint Probabilistic Data Association for Multiple Extended Object Tracking," 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 2018, pp. 6-10, doi: 10.1109/SAM.2018.8448430. keywords: {Shape;Object tracking;Clutter;Target tracking;Probabilistic logic;Shape measurement;Time measurement},

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值