电池电动汽车的健康状态 SOH 和充电状态 SOC 估计研究(Matlab代码实现)

       💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、SOC与SOH的定义及区别

二、SOC估计方法及技术

三、SOH估计方法及技术

四、SOH与SOC联合估计方案

五、实际应用与挑战

六、未来发展趋势

七、结论

📚2 运行结果

2.1 SOH_Estimation

2.2 SOC_Estimation

🎉3 参考文献

🌈4 Matlab代码、数据、文档下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、SOC与SOH的定义及区别

  1. SOC(State of Charge,荷电状态)
    • 定义:SOC表示电池当前剩余电量占其完全充电状态下总容量的百分比(0~100%)。其数学表达式为:

例如,SOC=50%表示电池可用电量为标称容量的一半。

  • 特性
  • 实时动态变化,受充放电电流、温度、老化等因素影响。
  • 无法直接测量,需通过电压、电流、内阻等参数间接估算。
  1. SOH(State of Health,健康状态)
    • 定义:SOH反映电池容量衰减程度,计算公式为:

新电池SOH为100%,完全失效时为0%。

  • 特性
  • 与内阻正相关,老化导致内阻增大。
  • 长期缓慢变化,需结合循环次数、温度历史等综合评估。
  1. 核心区别

    指标SOCSOH
    时间尺度实时动态变化长期缓慢衰减
    测量目标剩余电量容量衰减与内阻变化
    应用场景充放电管理、续航预测寿命预测、维护决策

二、SOC估计方法及技术

  1. 直接测量法

    • 开路电压法(OCV)
      通过静置电池测量开路电压,利用OCV-SOC曲线映射估算SOC。适用于铅酸电池,但对锂离子电池需长时间静置(>2小时),难以在线应用。
    • 阻抗法
      测量内阻变化间接推算SOC,但受温度影响显著,精度受限。
  2. 计数法

    • 库仑计数法
      对充放电电流积分计算电量,公式为:

缺点:依赖初始SOC精度,易累积传感器误差。

  1. 模型驱动法

    • 等效电路模型(ECM)
      采用电阻-电容网络模拟电池动态特性,结合扩展卡尔曼滤波(EKF)或无迹卡尔曼滤波(UKF)进行状态估计。例如,二阶RC模型在动态工况下误差<3%。
    • 电化学模型
      基于物理化学方程描述电池内部反应,精度高但计算复杂,适用于实验室环境。
  2. 数据驱动法

    • 神经网络(NN)与支持向量机(SVM)
      利用电压、电流、温度等数据训练模型,适应非线性特性,但需大量标注数据且可解释性差。
    • 深度学习(LSTM/GRU)
      处理时间序列数据,适用于动态工况下的SOC跟踪。例如,某研究在动态应力测试中RMSE<1%。

三、SOH估计方法及技术

  1. 直接测量法

    • 容量测试法
      完全充放电后积分电量,但耗时且不适合在线应用。
    • 电化学阻抗谱(EIS)
      通过频谱分析获取内阻,需专用设备,成本高。
  2. 模型驱动法

    • 等效电路模型
      辨识模型参数(如欧姆内阻、极化电容)与SOH的关联。例如,多因子ECM在老化条件下误差<1%。
    • 电化学模型
      结合老化机理(如SEI膜增长)建模,德国RWTH Aachen大学提出分数阶模型,计算效率提升30%。
  3. 数据驱动法

    • 统计特征提取
      从充电曲线提取健康因子(如恒流充电时间、峰值电压),输入回归模型预测SOH。例如,高斯过程回归在NASA数据集上RMSE<2%。
    • 时序深度学习
      利用循环神经网络(LSTM/GRU)捕捉老化趋势。某研究基于CALCE数据集,SOH预测误差<1.5%。

四、SOH与SOC联合估计方案

  1. 耦合模型设计

    • 状态空间扩展
      将SOC和SOH作为联合状态变量,通过EKF/UKF同步更新。例如,双扩展卡尔曼滤波(DEKF)在磷酸铁锂电池中SOC误差<2%,SOH误差<3%。
    • 参数交互更新
      利用FFRLS(带遗忘因子的递推最小二乘)在线辨识模型参数,动态修正SOC与SOH的相互影响。
  2. 混合架构

    • 模型-数据融合
      等效电路模型提供实时状态,数据驱动模型补偿老化效应。例如,某方案结合卡尔曼滤波与高斯过程回归,在牛津大学数据集上综合误差<1.5%。
    • 多尺度注意力机制
      新型Transformer模型通过多头注意力捕捉老化特征,在动态温度下SOC/SOH估计误差<0.9%。

五、实际应用与挑战

  1. 应用案例

    • BMS集成
      特斯拉BMS采用多模型卡尔曼滤波,实时跟踪SOC并预测SOH,支持OTA更新。
    • 智能充电桩
      安徽工程大学开发充电桩集成SOH检测模块,通过充电曲线分析预测电池寿命,误差<3%。
  2. 技术挑战

    • 模型复杂性
      高精度算法(如P2D电化学模型)计算量大,难以嵌入车载BMS。
    • 数据质量
      实际工况中电流波动、部分充放电导致特征提取困难。
    • 老化耦合效应
      SOC与SOH相互影响,单一模型难以兼顾动态响应与长期精度。

六、未来发展趋势

  1. 多模态融合
    结合电压、温度、声学等多传感器数据,提升估计鲁棒性。
  2. 边缘计算优化
    轻量化模型(如TinyML)部署于BMS,平衡计算效率与精度。
  3. 对抗性学习
    采用GA-BP神经网络抵御数据篡改攻击,确保估计稳定性。
  4. 标准化测试框架
    建立统一的老化数据集与评估标准,推动算法可比性。

七、结论

SOC与SOH的精确估计是电动汽车电池管理的核心技术。当前研究集中在模型驱动与数据驱动的融合,以及联合估计架构的创新。未来需进一步解决算法复杂度、实时性及实际工况适应性等问题,以推动技术从实验室向产业化过渡。

📚2 运行结果

2.1 SOH_Estimation

2.2 SOC_Estimation

部分代码:

% Covariance values
SigmaX0 = diag([1e2 1e-2 1e-3]); % uncertainty of initial state
SigmaV = 3e-1; % Uncertainty of voltage sensor, output equation
SigmaW = 4e0; % Uncertainty of current sensor, state equation

% Create ekfData structure and initialize variables using first
% voltage measurement and first temperature measurement
ekfData = initEKF(voltage(1),T,SigmaX0,SigmaV,SigmaW,model);

% Now, enter loop for remainder of time, where we update the SPKF
% once per sample interval

for k = 1:length(voltage),
  vk = voltage(k); % "measure" voltage
  ik = current(k); % "measure" current
  Tk = T;          % "measure" temperature
  
  % Update SOC (and other model states)
  [sochat(k),socbound(k),ekfData] = iterEKF(vk,ik,Tk,deltat,ekfData);
  if mod(k,1000)==0,
    fprintf('  Completed %d out of %d iterations...\n',k,length(voltage));
  end  
end
  
%%
figure(1);
plot(time/60,100*sochat,time/60,100*soc,'linewidth',1.5);
hold on
plot([time/60; NaN; time/60],[100*(sochat+socbound); NaN; 100*(sochat-socbound)],'g');

title('SOC estimation using EKF'); 
grid on;
xlabel('Time (min)'); 
ylabel('SOC (%)');
legend('Estimate','Truth','Bounds');

%%
fprintf('RMS SOC estimation error = %g%%\n',sqrt(mean((100*(soc-sochat)).^2)));

%%
figure(2);
plot(time/60,100*(soc-sochat),'linewidth',1.5);
hold on
plot([time/60; NaN; time/60],[100*socbound; NaN; -100*socbound]);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]姚蒙蒙.纯电动汽车用锂离子电池组SOC与SOH的联合估计研究[J].[2024-05-31].

[2]何复兴.基于数据驱动的锂离子电池荷电状态及健康状态估计研究[J].[2024-05-31].

[3]王少华.电动汽车动力锂电池模型参数辨识和状态估计方法研究[D].吉林大学,2021.

[4]刘芳,刘欣怡,苏卫星,等.电动汽车动力电池健康状态在线估算方法[J].东北大学学报(自然科学版), 2020, 41(4):492-498.

🌈4 Matlab代码、数据、文档下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值