💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、SOC与SOH的定义及区别
- SOC(State of Charge,荷电状态)
- 定义:SOC表示电池当前剩余电量占其完全充电状态下总容量的百分比(0~100%)。其数学表达式为:
-
例如,SOC=50%表示电池可用电量为标称容量的一半。
- 特性:
- 实时动态变化,受充放电电流、温度、老化等因素影响。
- 无法直接测量,需通过电压、电流、内阻等参数间接估算。
- SOH(State of Health,健康状态)
- 定义:SOH反映电池容量衰减程度,计算公式为:
- 定义:SOH反映电池容量衰减程度,计算公式为:
新电池SOH为100%,完全失效时为0%。
- 特性:
- 与内阻正相关,老化导致内阻增大。
- 长期缓慢变化,需结合循环次数、温度历史等综合评估。
-
核心区别
指标 SOC SOH 时间尺度 实时动态变化 长期缓慢衰减 测量目标 剩余电量 容量衰减与内阻变化 应用场景 充放电管理、续航预测 寿命预测、维护决策
二、SOC估计方法及技术
-
直接测量法
- 开路电压法(OCV):
通过静置电池测量开路电压,利用OCV-SOC曲线映射估算SOC。适用于铅酸电池,但对锂离子电池需长时间静置(>2小时),难以在线应用。 - 阻抗法:
测量内阻变化间接推算SOC,但受温度影响显著,精度受限。
- 开路电压法(OCV):
-
计数法
- 库仑计数法:
对充放电电流积分计算电量,公式为:
- 库仑计数法:
缺点:依赖初始SOC精度,易累积传感器误差。
-
模型驱动法
- 等效电路模型(ECM):
采用电阻-电容网络模拟电池动态特性,结合扩展卡尔曼滤波(EKF)或无迹卡尔曼滤波(UKF)进行状态估计。例如,二阶RC模型在动态工况下误差<3%。 - 电化学模型:
基于物理化学方程描述电池内部反应,精度高但计算复杂,适用于实验室环境。
- 等效电路模型(ECM):
-
数据驱动法
- 神经网络(NN)与支持向量机(SVM):
利用电压、电流、温度等数据训练模型,适应非线性特性,但需大量标注数据且可解释性差。 - 深度学习(LSTM/GRU):
处理时间序列数据,适用于动态工况下的SOC跟踪。例如,某研究在动态应力测试中RMSE<1%。
- 神经网络(NN)与支持向量机(SVM):
三、SOH估计方法及技术
-
直接测量法
- 容量测试法:
完全充放电后积分电量,但耗时且不适合在线应用。 - 电化学阻抗谱(EIS):
通过频谱分析获取内阻,需专用设备,成本高。
- 容量测试法:
-
模型驱动法
- 等效电路模型:
辨识模型参数(如欧姆内阻、极化电容)与SOH的关联。例如,多因子ECM在老化条件下误差<1%。 - 电化学模型:
结合老化机理(如SEI膜增长)建模,德国RWTH Aachen大学提出分数阶模型,计算效率提升30%。
- 等效电路模型:
-
数据驱动法
- 统计特征提取:
从充电曲线提取健康因子(如恒流充电时间、峰值电压),输入回归模型预测SOH。例如,高斯过程回归在NASA数据集上RMSE<2%。 - 时序深度学习:
利用循环神经网络(LSTM/GRU)捕捉老化趋势。某研究基于CALCE数据集,SOH预测误差<1.5%。
- 统计特征提取:
四、SOH与SOC联合估计方案
-
耦合模型设计
- 状态空间扩展:
将SOC和SOH作为联合状态变量,通过EKF/UKF同步更新。例如,双扩展卡尔曼滤波(DEKF)在磷酸铁锂电池中SOC误差<2%,SOH误差<3%。 - 参数交互更新:
利用FFRLS(带遗忘因子的递推最小二乘)在线辨识模型参数,动态修正SOC与SOH的相互影响。
- 状态空间扩展:
-
混合架构
- 模型-数据融合:
等效电路模型提供实时状态,数据驱动模型补偿老化效应。例如,某方案结合卡尔曼滤波与高斯过程回归,在牛津大学数据集上综合误差<1.5%。 - 多尺度注意力机制:
新型Transformer模型通过多头注意力捕捉老化特征,在动态温度下SOC/SOH估计误差<0.9%。
- 模型-数据融合:
五、实际应用与挑战
-
应用案例
- BMS集成:
特斯拉BMS采用多模型卡尔曼滤波,实时跟踪SOC并预测SOH,支持OTA更新。 - 智能充电桩:
安徽工程大学开发充电桩集成SOH检测模块,通过充电曲线分析预测电池寿命,误差<3%。
- BMS集成:
-
技术挑战
- 模型复杂性:
高精度算法(如P2D电化学模型)计算量大,难以嵌入车载BMS。 - 数据质量:
实际工况中电流波动、部分充放电导致特征提取困难。 - 老化耦合效应:
SOC与SOH相互影响,单一模型难以兼顾动态响应与长期精度。
- 模型复杂性:
六、未来发展趋势
- 多模态融合:
结合电压、温度、声学等多传感器数据,提升估计鲁棒性。 - 边缘计算优化:
轻量化模型(如TinyML)部署于BMS,平衡计算效率与精度。 - 对抗性学习:
采用GA-BP神经网络抵御数据篡改攻击,确保估计稳定性。 - 标准化测试框架:
建立统一的老化数据集与评估标准,推动算法可比性。
七、结论
SOC与SOH的精确估计是电动汽车电池管理的核心技术。当前研究集中在模型驱动与数据驱动的融合,以及联合估计架构的创新。未来需进一步解决算法复杂度、实时性及实际工况适应性等问题,以推动技术从实验室向产业化过渡。
📚2 运行结果
2.1 SOH_Estimation
2.2 SOC_Estimation
部分代码:
% Covariance values
SigmaX0 = diag([1e2 1e-2 1e-3]); % uncertainty of initial state
SigmaV = 3e-1; % Uncertainty of voltage sensor, output equation
SigmaW = 4e0; % Uncertainty of current sensor, state equation
% Create ekfData structure and initialize variables using first
% voltage measurement and first temperature measurement
ekfData = initEKF(voltage(1),T,SigmaX0,SigmaV,SigmaW,model);
% Now, enter loop for remainder of time, where we update the SPKF
% once per sample interval
for k = 1:length(voltage),
vk = voltage(k); % "measure" voltage
ik = current(k); % "measure" current
Tk = T; % "measure" temperature
% Update SOC (and other model states)
[sochat(k),socbound(k),ekfData] = iterEKF(vk,ik,Tk,deltat,ekfData);
if mod(k,1000)==0,
fprintf(' Completed %d out of %d iterations...\n',k,length(voltage));
end
end
%%
figure(1);
plot(time/60,100*sochat,time/60,100*soc,'linewidth',1.5);
hold on
plot([time/60; NaN; time/60],[100*(sochat+socbound); NaN; 100*(sochat-socbound)],'g');
title('SOC estimation using EKF');
grid on;
xlabel('Time (min)');
ylabel('SOC (%)');
legend('Estimate','Truth','Bounds');
%%
fprintf('RMS SOC estimation error = %g%%\n',sqrt(mean((100*(soc-sochat)).^2)));
%%
figure(2);
plot(time/60,100*(soc-sochat),'linewidth',1.5);
hold on
plot([time/60; NaN; time/60],[100*socbound; NaN; -100*socbound]);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]姚蒙蒙.纯电动汽车用锂离子电池组SOC与SOH的联合估计研究[J].[2024-05-31].
[2]何复兴.基于数据驱动的锂离子电池荷电状态及健康状态估计研究[J].[2024-05-31].
[3]王少华.电动汽车动力锂电池模型参数辨识和状态估计方法研究[D].吉林大学,2021.
[4]刘芳,刘欣怡,苏卫星,等.电动汽车动力电池健康状态在线估算方法[J].东北大学学报(自然科学版), 2020, 41(4):492-498.
🌈4 Matlab代码、数据、文档下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取