“大模型评测到底该怎么做?有哪些标准能让结果靠谱?”刚接触评测时,我满脑子问号。准确性、流畅性哪个更重要?开源数据集好用,还是自己设计测试?如何确保评测结果不偏颇?我开始研究BLEU、ROUGE等指标,又尝试用实际任务验证模型表现。结果发现,评测既是科学,也是艺术。那么,具体该如何从理论走向实践?让我们一步步揭开答案。
2025年,大模型的应用从聊天机器人到自动编程,无处不在,评测需求随之井喷。行业报告显示,90%的AI项目需定制评测方案,以确保模型适配业务场景。开源社区如Hugging Face推出了Eval库,集成GLUE、SuperGLUE等基准,开发者热情高涨。与此同时,企业越来越注重模型的安全性和偏见问题,评测从单纯的性能转向伦理与实用性并重。这种趋势下,掌握评测技能不仅是技术要求,更是抢占AI赛道的敲门砖。
大模型能够协助我们完成各种任务,改变我们的生产和生活的方式,提高生产力,为我们带来便利,但同时使用过程中也伴随着诸多风险与挑战,如泄露隐私数据,生成带有偏见、暴力、歧视、违反基本道德和法律法规的内容,传播虚假信息等。
因此对大模型能力及其不足之处形成更深入的认识和理解,预知并防范大模型带来的安全挑战和风险,需要针对大模型开展多方位的评测,一般也叫大模型基准测试。大模型基准测试(Benchmark)的目标是通过设计合理的测试任务和数据集来对模型的能力进行全面、量化的评估。大模型基准测试体系涵盖了大模型的测评指标、方法、数据集等多项关键要素,是指导大模型基准测试落地实践的规范。
对大模型进行全方位评测面临诸多挑战,由于大模型的通用性强,能够胜任多种任务,因此大模型的全方位评测涉及的范围广、工作量大、评测成本高昂;其次,由于数据标注工作量大,许多维度的评测基准仍然有待构建;再次,自然语言的多样性和复杂性,使得许多评测样本无法形成标准答案,或者标准答案不止一个,这导致相应的评测指标难以量化;此外,大模型在评测数据集的表现很难完全代表其在真实应用场景的表现。
01 评测意义
大模型评测领域的第一篇综述文章《A Survey on Evaluation of Large Language Models》指出,在安全性和可靠性方面,评测可以更好地统筹和规划大模型未来的发展的演变、防范未知和可能的风险。
-
验证性能和能力:
确保模型在特定任务上达到预期的效率和准确性。深入了解大模型的性能和能力,明确其在各种任务和场景中的表现水平,例如在自然语言处理中的文本生成、机器翻译、问答系统等任务中的准确性和效率。
-
评估泛化能力:
测试模型能否在未见过的数据上保持良好的表现。通过不断的评测和反馈,促使研究人员和开发者改进技术,提高模型的性能和泛化能力,以应对日益复杂和多样化的应用需求。
-
明确不同大模型的差异:
为用户提供模型选择的依据,了解不同模型的差异和优劣。在众多大模型竞争的背景下,客观准确的评测能够为用户和开发者提供决策依据,选择更适合特定需求的模型。比如,在选择用于智能客服的大模型时,可以通过评测其回答准确性和响应速度来做出决策。
-
指导大模型改进:
识别模型弱点并提供优化方向。通过评测,可以发现模型的优势和不足,为后续的改进和优化提供方向。例如,在文本生成任务中,如果发现生成的文本存在逻辑不连贯或语义不准确的问题,就可以针对性地调整模型的训练参数或架构。
-
防范大模型引发的风险:
安全漏洞扫描评测可以揭示模型的安全漏洞,例如提示注入攻击等。评测也可以检查模型是否存在隐私泄露的风险,例如是否会意外地透露用户的个人信息或敏感数据。通过加强安全与隐私检测,可以有效降低大模型在这方面的风险。
02 评测准备
评测如何开展,首先有计划,评测内容是什么,评测对象有什么特点,考虑评测维度和边界(包括评测数据涉及到的范围,评测性能、资源消耗等等),关注哪些评测的结果,如何保证评测结果真实反映模型能力,如何创建指标体系,方便与其他模型对比,使用什么工具做评测。
对大模型评测需要从模型本身特点,通用还是专业领域,多模还是单模、主要能力是问题解答还是代码编写等多方面考虑,之后需要考虑评测的目的,是为了验证模型的哪些特点,然后选择评测数据集。
业内领先的评测体系如MMLU、MT-Bench、CEval、CMMLU等,早已建立了从语言理解、推理能力、专业知识、交互体验等全栈维度的科学评估方法。
比如:在评估某国产大模型时,使用 MMLU 含医疗/法律/数学等57类任务进行交叉验证,最终帮助团队识别出知识盲区并优化prompt。
03 评测目的
评测最终为结果服务,达成目的需要确定评测策略。在具体评测需要考虑被评测对象自身特点,在完整的大模型基准评测体系下,选择合适的评测方式、评测数据集、评测指标及评测工具。
随着国产大模型纷纷上线,性能卷到飞起,但**“好用不好用”光靠宣传不够看,评测体系成为产业信任基石。**
国家级评测中心陆续设立,企业纷纷自建评测平台,评测体系不成熟 = 模型白忙活。
04 评测策略
大模型评测的目的不同,有不同评测策略,如大模型研发人员关心的是衡量模型的性能、精选和优化模型,以加快AI创新和实践,同时确保模型的安全性和可靠性,防范潜在风险。而大模型使用者则关心大模型在特定场景中表现,更多关心某些能力,使用价格等等。而评测机构则看中大模型之间的综合能力对比,以及各自的特点。
不同的策略看中的大模型的特征会有差异,导致使用大模型基准评测体系也侧重不同。例如开发研究人员更注重模型的科学性和全面性能评估,而使用者则更关注模型的实际应用效果和用户体验。
05 大模型分类
随着人工智能领域的快速发展,新的模型和分类方式也在不断出现,一个大模型可以同时属于多个分类。不同分类评测方法可能不同,因此不同大模型之间评测的方式也会有差异。
按功能划分
自然语言处理(NLP)模型:专注于处理和理解人类语言。
例如:GPT系列(由OpenAI开发)、BERT(由Google开发)、T5(由Google开发)。
计算机视觉模型:处理和理解图像和视频内容。
例如:ResNet(由微软研究院开发)、VGG(由牛津大学的视觉几何组开发)、EfficientNet(由谷歌大脑团队开发)。
按架构划分
变换器(Transformer)模型:基于自注意力机制,适用于多种任务。
例如:GPT-3(由OpenAI开发)、BERT(由Google开发)。
卷积神经网络(CNN):主要用于图像和视频识别。
例如:AlexNet(由多伦多大学开发)、Inception(由Google开发)。
混合专家模型(MoE):这种架构允许模型根据输入数据的特性选择不同的专家来处理,从而提高了模型的表达能力和效率。
例如:Switch Transformer(由Google开发,拥有超过1万亿参数)、天工3.0(由昆仑万维开发,拥有 4000 亿参数)。
按应用领域划分
通用模型L0:设计用于执行多种任务,具有广泛的应用。可在多个领域和任务上通用,具备强大泛化能力,相当于完成了 “通识教育”。
例如:GPT-4(由OpenAI开发)、DALL-E(由OpenAI开发)。
行业大模型 L1:针对特定行业或领域,使用行业相关数据进行预训练或微调,以提高在该领域的性能和准确度,成为 “行业专家”。
例如:Med-PaLM(由Google和DeepMind联合开发,医疗领域)、LegalBert(一种基于BERT架构的模型,法律文件分析)。
垂直大模型 L2:针对特定任务或场景,利用任务相关数据进行预训练或微调,提高在该任务上的性能和效果。
例如:FSD(特斯拉自动驾驶技术) 、Apollo(百度开发,L4级自动驾驶的大模型)
按规模划分
小型模型:参数数量较少,适用于资源受限的环境。
中型模型:参数数量适中,平衡了性能和资源消耗。
大型模型:参数数量庞大,通常需要大量计算资源。
例如:Switch Transformer(由Google开发,拥有超过1万亿参数)。
按训练方式划分
自监督学习模型:在没有或少量标注数据的情况下通过预测数据的不同部分来学习。
例如:BERT(由Google开发)。
监督学习模型:使用大量标注数据进行训练。
例如:传统的图像识别模型。
按所有权和开放性划分
开源模型:模型的代码和权重对公众开放,可以自由使用和修改。
例如:BERT(由Google开发)、Hugging Face的Transformers库。
闭源模型:由公司或组织私有,不公开模型的具体细节。
例如:GPT-4(由OpenAI开发)
06 大模型基准评测体系
由于各种大模型的差异及评测目的的不同,评测方式同样也多种多样,如果总结成体系,能更好指导评测执行。评测体系一般包含测试指标、测试数据集、测试方法、测试工具四个要素。在明确大模型及评测目的后,首先需要建立指标体系,选择合适的数据集,确定测试方法,最后搭建测试工具进行评测。
结语
总的来说,大模型评测通过指标分析和任务验证,全面揭示模型的能力与局限。它不仅是技术流程,更是选择合适AI的决策依据。从理论的指标体系到实战的任务设计,评测让开发者更懂模型,也让AI更贴近需求。掌握它,你就能在AI浪潮中游刃有余。
评测,是AI应用化的关键一步。理论清晰,实践扎实,才能让大模型真正“从能说话”走向“能帮忙”。
“评测大模型,洞悉真实力,AI未来一飞冲天!”