本文将侧重平稳随机信号的两种基本描述:时域和频域特性。这两种描述是互补的,具有同等重要的作用。
目录
前言
信号是信息的载体。信号的信息可以是一系统的模型参数、冲激响应和功率谱,也可以是一人工目标(的分类特征,还可以是诸如气象、水文的预报、人体心电的异常等等。其数值或观测值为随机变量的信号称为随机信号。
随机,是指信号的取值服从某种概率分布规律。这一规律可以是完全已知的、部分已知的或完全未知的。随机信号也称随机过程、随机函数或随机序列。
一、信号分类
随机信号是在时间或空间上具有随机性质的信号。根据不同的特征和性质,可以对随机信号进行多种分类。以下是一些常见的随机信号分类:
-
离散随机信号 vs. 连续随机信号:
- 离散随机信号是在离散时间或空间点上定义的,通常由序列组成。
- 连续随机信号是在连续时间或空间上定义的,通常由连续的函数表示。
-
宽带信号 vs. 窄带信号:
- 宽带信号在频率上具有广泛的分布。
- 窄带信号在频率上集中在一个相对较小的范围内。
-
功率信号 vs. 能量信号:
- 功率信号在无穷时间内具有有限的平均功率。
- 能量信号在无穷时间内具有有限的总能量。
-
平稳随机信号 vs. 非平稳随机信号:
- 平稳随机信号的统计性质不随时间或空间的变化而改变。
- 非平稳随机信号的统计性质随时间或空间的变化而变化。
-
高斯信号 vs. 非高斯信号:
- 高斯信号具有高斯分布的统计特性。
- 非高斯信号的统计分布不符合高斯分布。
-
马尔可夫信号 vs. 非马尔可夫信号:
- 马尔可夫信号的未来状态只依赖于当前状态,与过去的状态无关。
- 非马尔可夫信号的未来状态可能依赖于过去的多个状态。
-
周期随机信号 vs. 非周期随机信号:
- 周期随机信号具有统计上的周期性。
- 非周期随机信号在统计上不具有明显的周期性。
这些分类仅是对随机信号进行归纳的一种方式,实际上,一个信号可能同时属于多个分类。不同的分类方式有助于理解和分析随机信号在不同应用中的性质和行为。
1、确定性信号
如果序列{s(t)}在每个时刻的取值不是随机的,而是服从某种固定函数的关系,则称之为确定性信号。下面是几种常用的确定性信号。
2、随机信号
与确定性信号不同,若序列{s(t)}在每个时刻的取值是随机变量,则称之为随机信号。例如,相位随机变化的正弦波信号:
随机信号也称随机过程,具有以下特点:
- 随机信号在任何时间的取值都是不能先验确定的随机变量。
- 虽然随机信号取值不能先验确定,但这些取值却服从某种统计规律。换言之,随机信号或过程可以用概率分布特性(简称统计性能)统计地描述。
3、平稳信号
平稳信号(Stationary Signal)是指其统计特性在时间上不随时间的变化而改变。具体而言,一个信号若是平稳的,则其统计性质在不同时间段内保持不变。
平稳信号常称时不变信号,意即统计量不随时间变化的信号。类似地,非平稳信号也常称时变信号,因为它至少有某个统计量(如均值、协方差函数)是时间的函数。注意,时变与时不变信号不应该理解为信号的取值或波形是否随时间变化。
遍历性
随机信号还有一个重要的性质—-—遍历性(ergodicity),其核心问题是,从随机信号的一次观测记录是否可以估计其统计量(如相关函数、功率谱等)。
均方遍历性(Mean Square Ergodicity)是随机过程的一个重要性质,它描述了一个随机过程在均方意义下的遍历性。
一个随机过程是均方遍历的,如果对于每一个时刻 t,该时刻的样本函数(单个实现)在均方意义下收敛到随机过程的期望。具体而言,对于均方遍历性,我们关注的是随机过程的平均性质。
形式上,如果随机过程 X(t) 是均方遍历的,那么对于每个时刻 t,有:
这表示在均方意义下,随机过程的样本函数在