1.香农熵是什么?
香农熵(Shannon Entropy)是信息论中的一个重要概念,由克劳德·香农在1948年提出,用来衡量一个系统的不确定性或信息量。香农熵常用于描述一个随机变量的不确定性程度,也可以用来衡量信息源的平均信息量。
对于一个离散型随机变量,其香农熵
的计算公式为:
其中,p(x)表示随机变量X取某个值x的概率,log2表示以2为底的对数运算。这个公式表示了对每个可能取值x,用该值的概率乘以以2为底的对数概率的负值,然后将所有可能取值的结果相加,就得到了香农熵的值。
2.香农熵计算举例
假设有一个数据集包含了一些动物及其对应的分类("是"或"否")。我们想要计算这个数据集的香农熵,以了解其中信息的混乱程度。