数理逻辑 4 命题公式的范式

本文介绍了逻辑表达式的范式转换,包括主合取范式和主析取范式。主合取范式中,任何子式为假都将导致整体为假;而在主析取范式中,只要一个子式为真,整体即为真。同时,讨论了如何通过赋值策略来使公式变为真或假,这对于理解逻辑推理和布尔代数至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

范式的定义:

析就是并,合就是或,合取就是里合外析,析取就是里析外合。

析取式强调的是里面的式子是析取,也就是并。合取式强调的是里面的式子是合取,也就是或。

 常用逻辑等价式:

那要怎样把普通的式子转化为合取或者析取式呢?:

主范式:

 极大项就是和,极小项就是并。

例子:

弄假指派:

弄假就是使得公式为假的赋值。

对于一个主合取范式,只要让其中的一个子式为假,总体就为假。

对于一个主析取式,只要让其中的一个子式为真,就可以让总体为真。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值