InfoGAN 简介与代码实战

1.介绍
  在原始gan(GAN 简介与代码实战_天竺街潜水的八角的博客-CSDN博客)中,生成数据的来源一般是一个固定分布噪声z,z可以生成不同的图片,z代表着很多意思,我们无法知道z的那个维度代表什么(比如在生成数字手写图片的时候,0维度是否代表笔画的风格,我们不得而知),z是不可解释的。为了解决这个问题,InfoGAN就横空出世了,更加详细的内容参见论文:Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

 
2.模型结构
  网络是基于DC-GAN(Deep Convolutional GAN)的,G和D都由CNN构成。在此基础上,Q和D共享卷积网络,然后分别通过各自的全连接层输出不同的内容:Q输出对应于生成图片的c'(与之对应的c是可以控制图片的生成,比如生成什么数字),D则仍然判别真伪。

3.模型特点

      相对于原始gan,作者将Z分成z(固定分布噪声)和c(一些隐变量信息,比如笔画风格,字体大小等),损失函数里面用到互信息,使得隐变量c与生成的变量G(z,c)拥有尽可能多的共同信息。

4.代码实现keras

class INFOGAN():
    def __init__(self):
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.num_classes = 10
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.latent_dim = 72
 
 
        optimizer = Adam(0.0002, 0.5)
        losses = ['binary_crossentropy', self.mutual_info_loss]
 
        # Build and the discriminator and recognition network
        self.discriminator, self.auxilliary = self.build_disk_and_q_net()
 
        self.discriminator.compile(loss=['binary_crossentropy'],
            optimizer=optimizer,
            metrics=['accuracy'])
 
        # Build and compile the recognition network Q
        self.auxilliary.compile(loss=[self.mutual_info_loss],
            optimizer=optimizer,
            metrics=['accuracy'])
 
        # Build the generator
        self.generator = self.build_generator()
 
        # The generator takes noise and the target label as input
        # and generates the corresponding digit of that label
        gen_input = Input(shape=(self.latent_dim,))
        img = self.generator(gen_input)
 
        # For the combined model we will only train the generator
        self.discriminator.trainable = False
 
        # The discriminator takes generated image as input and determines validity
        valid = self.discriminator(img)
        # The recognition network produces the label
        target_label = self.auxilliary(img)
 
        # The combined model  (stacked generator and discriminator)
        self.combined = Model(gen_input, [valid, target_label])
        self.combined.compile(loss=losses,
            optimizer=optimizer)
 
 
    def build_generator(self):
 
        model = Sequential()
 
        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
        model.add(Activation("tanh"))
 
        gen_input = Input(shape=(self.latent_dim,))
        img = model(gen_input)
 
        model.summary()
 
        return Model(gen_input, img)
 
 
    def build_disk_and_q_net(self):
 
        img = Input(shape=self.img_shape)
 
        # Shared layers between discriminator and recognition network
        model = Sequential()
        model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(ZeroPadding2D(padding=((0,1),(0,1))))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(256, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(512, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Flatten())
 
        img_embedding = model(img)
 
        # Discriminator
        validity = Dense(1, activation='sigmoid')(img_embedding)
 
        # Recognition
        q_net = Dense(128, activation='relu')(img_embedding)
        label = Dense(self.num_classes, activation='softmax')(q_net)
 
        # Return discriminator and recognition network
        return Model(img, validity), Model(img, label)
 
 
    def mutual_info_loss(self, c, c_given_x):
        """The mutual information metric we aim to minimize"""
        eps = 1e-8
        conditional_entropy = K.mean(- K.sum(K.log(c_given_x + eps) * c, axis=1))
        entropy = K.mean(- K.sum(K.log(c + eps) * c, axis=1))
 
        return conditional_entropy + entropy
 
    def sample_generator_input(self, batch_size):
        # Generator inputs
        sampled_noise = np.random.normal(0, 1, (batch_size, 62))
        sampled_labels = np.random.randint(0, self.num_classes, batch_size).reshape(-1, 1)
        sampled_labels = to_categorical(sampled_labels, num_classes=self.num_classes)
 
        return sampled_noise, sampled_labels
 
    def train(self, epochs, batch_size=128, sample_interval=50):
 
        # Load the dataset
        (X_train, y_train), (_, _) = mnist.load_data()
 
        # Rescale -1 to 1
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)
        y_train = y_train.reshape(-1, 1)
 
        # Adversarial ground truths
        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))
 
        for epoch in range(epochs):
 
            # ---------------------
            #  Train Discriminator
            # ---------------------
 
            # Select a random half batch of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs = X_train[idx]
 
            # Sample noise and categorical labels
            sampled_noise, sampled_labels = self.sample_generator_input(batch_size)
            gen_input = np.concatenate((sampled_noise, sampled_labels), axis=1)
 
            # Generate a half batch of new images
            gen_imgs = self.generator.predict(gen_input)
 
            # Train on real and generated data
            d_loss_real = self.discriminator.train_on_batch(imgs, valid)
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
 
            # Avg. loss
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
 
            # ---------------------
            #  Train Generator and Q-network
            # ---------------------
 
            g_loss = self.combined.train_on_batch(gen_input, [valid, sampled_labels])
 
            # Plot the progress
            print ("%d [D loss: %.2f, acc.: %.2f%%] [Q loss: %.2f] [G loss: %.2f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss[1], g_loss[2]))
 
            # If at save interval => save generated image samples
            if epoch % sample_interval == 0:
                self.sample_images(epoch)
 
    def sample_images(self, epoch):
        r, c = 10, 10
 
        fig, axs = plt.subplots(r, c)
        for i in range(c):
            sampled_noise, _ = self.sample_generator_input(c)
            label = to_categorical(np.full(fill_value=i, shape=(r,1)), num_classes=self.num_classes)
            gen_input = np.concatenate((sampled_noise, label), axis=1)
            gen_imgs = self.generator.predict(gen_input)
            gen_imgs = 0.5 * gen_imgs + 0.5
            for j in range(r):
                axs[j,i].imshow(gen_imgs[j,:,:,0], cmap='gray')
                axs[j,i].axis('off')
        fig.savefig("images/%d.png" % epoch)
        plt.close()

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
InfoGAN是一种基于生成对抗网络GAN)结构的模型,它的目标是通过对潜在空间进行有意义的分解来学习到更具语义的表示。在InfoGAN中,生成器和判别器的训练过程被设计为协同进行,以便发现数据中的有用信息,并使用这些信息来生成更加逼真和可控制的输出。通过在损失函数中引入辅助变量和衡量信息量的术语,InfoGAN能够实现对潜在编码的部分控制,从而使生成的图像在特定因素上具有可解释性。 而PyTorch是一个开源的深度学习库,它提供了丰富的工具和接口,使得用户可以轻松地构建和训练深度学习模型。PyTorch的动态计算图机制使得模型的构建更加灵活,并且能够支持更加复杂的网络结构。同时,PyTorch也提供了许多优化和自动微分的工具,能够帮助用户高效地进行模型训练和参数调整。 结合InfoGAN和PyTorch,我们可以使用PyTorch的深度学习工具来构建和训练InfoGAN模型。通过PyTorch的灵活性和丰富的工具,我们可以轻松地定制InfoGAN模型的架构,并使用PyTorch提供的优化和自动微分工具来高效地训练模型。这样,我们就能够更好地学习到数据中的有用信息,并使用这些信息来生成更加具有可解释性和控制性的生成图像。总之,InfoGAN在PyTorch的支持下能够更好地发挥其优势,为深度生成模型的研究和应用提供更加强大和灵活的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值