学习率余弦退火衰减之后的loss

 使用余弦退火之后,loss也就一蹦一蹦啦

### 余弦学习率调度器的实现与应用 在机器学习训练过程中,调整学习率对于模型收敛至关重要。余弦退火策略是一种常用的学习率调度方法,其核心在于通过周期性的改变学习率来优化训练效果。 #### 学习率变化规律 余弦学习率调度器按照余弦函数的形式逐渐降低初始学习率至最小值,在某些情况下还可以设置重启机制使得学习率重新回到较高水平继续下降。这种设计有助于跳出局部最优解并加速全局搜索过程[^1]。 #### PyTorch中的具体实现方式 以下是基于PyTorch框架的一个简单例子展示如何创建一个带有预热阶段和平滑过渡特性的余弦退火LR调度程序: ```python import torch.optim as optim from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts optimizer = optim.Adam(model.parameters(), lr=0.1) # T_0表示第一个restart后的epoch数目;T_mult用于控制后续每次restart时增加多少倍数,默认为1即不增长。 scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2) ``` 在此基础上可以进一步自定义参数`eta_min`(最低学习率),以及利用其他高级特性如warm-up等来增强性能表现。 #### TensorFlow/Keras 实现方案 同样地,在TensorFlow Keras API下也可以方便地构建类似的调度逻辑: ```python import tensorflow as tf initial_learning_rate = 0.1 lr_schedule = tf.keras.experimental.CosineDecay( initial_learning_rate, decay_steps=1000 ) model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=lr_schedule), loss='sparse_categorical_crossentropy', metrics=['accuracy']) ``` 这里使用了实验性质API `tf.keras.experimental.CosineDecay` 来模拟标准的单次衰减行为,而如果希望加入更多复杂功能,则需考虑编写自定义回调或者寻找第三方库支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值